Concours Communs Mines-Ponts Correction - MP1 Avril 2013

www.math93.com / www.mathexams.fr

Mines MP 2013 - Epreuve 1

A. Formes bilinéaires symétriques plates.

- 1) Question de cours.
- Comme φ est une forme bilinéaire, l'application $\tilde{\varphi}: \left\{ \begin{array}{ccc} E=\mathbb{R}^n & \longrightarrow & E^*=(\mathbb{R}^n)^* \\ x & \mapsto & \varphi(x,\cdot) \end{array} \right.$ est linéaire de $E=\mathbb{R}^n$ dans son dual $E^*=(\mathbb{R}^n)^*$. Par ailleurs, comme \mathbb{R}^n est de dimension finie, \mathbb{R}^n muni du produit scalaire usuel est un espace euclidien.

Or d'après le théorème de représentation des formes linéaires :

Le théorème de représentation de Riesz : $\Psi: x \in \mathbb{R}^n \mapsto \langle x, \cdot \rangle \in (\mathbb{R}^n)^*$ est un isomorphisme d'espace vectoriel.

Preuve:

 Ψ est clairement une application linéaire injective entre deux \mathbb{R} -espace vectoriel , de même dimension donc elle est bijective.

Ainsi

$$[\varphi(x,y) = \langle u(x),y\rangle \ \ \forall (x;y) \in \mathbb{R}^n \times \mathbb{R}^n] \Longleftrightarrow [\tilde{\varphi}(x) = (\Psi \circ u)(x) \ \forall x \in \mathbb{R}^n]$$

$$[\varphi(x,y) = \langle u(x),y\rangle \ \ \forall (x;y) \in \mathbb{R}^n \times \mathbb{R}^n] \Longleftrightarrow \tilde{\varphi} = \Psi \circ u$$

Comme Ψ est bijectif, on a donc

$$[\varphi(x,y) = \langle u(x),y\rangle \ \ \forall (x;y) \in \mathbb{R}^n \times \mathbb{R}^n] \Longleftrightarrow u = \Psi^{-1} \circ \tilde{\varphi}.$$

Ainsi u existe et est unique, de plus u est linéaire de \mathbb{R}^n dans lui-même par composition d'applications linéaires.

Comme φ est symétrique, on a pour tout (x;y) de $(\mathbb{R}^n)^2$: $\langle u(x),y\rangle=\varphi(x,y)=\varphi(y,x)=\langle u(y),x\rangle=\langle x,u(y)\rangle$ (par symétrie du produit scalaire) Ainsi u est bien symétrique.

- Comme u est un endomorphisme symétrique d'un espace euclidien, le théorème spectral assure qu'il existe une base orthonormée $(e_i)_{1\leqslant i\leqslant n}$ de \mathbb{R}^n formée de vecteurs propres pour u. Ainsi en notant λ_i la valeur propre associée à e_i , on obtient pour tout $i\neq j$: $\varphi(e_i,e_j)=\langle u(e_i),e_j\rangle=\lambda_i\langle e_i,e_j\rangle=0$ Ainsi φ est bien diagonalisable.
- 2) L'application $a \otimes b$ est bien définie de $\mathbb{R}^n \times \mathbb{R}^n$ dans \mathbb{R} ; elle est bilinéaire car $(a \otimes b)(x, \cdot) = a(x)b$ est linéaire (puisque a(x) est un réel et b est linéaire) et $(a \otimes b)(\cdot, x) = b(x)a$ aussi et ce pour tout x de \mathbb{R}^n .

• Si a est nulle alors $a \otimes b$ est symétrique car c'est l'application nulle.

Si a n'est pas nulle alors soit x_0 dans \mathbb{R}^n avec $a(x_0) \neq 0$.

Analysons la situation : si $a \otimes b$ est symétrique alors pour tout $y \in \mathbb{R}^n$, on a $(a \otimes b)(x_0, y) = (a \otimes b)(y, x_0)$ i.e. $a(x_0)b(y) = b(x_0) \, a(y)$ donc $b = \mu a$ avec $\mu = b(x_0)/a(x_0)$ (car $a(x_0) \in \mathbb{R}^*$).

Réciproquement si b s'écrit μa avec $\mu \in \mathbb{R}$ alors $a \otimes b = \mu a \otimes a$ donc est symétrique puisque dans $(a \otimes b)(x,y) = \mu \, a(x), a(y)$ les rôles de x et y sont bien symétriques.

Finalement $a \otimes b$ est symétrique si et seulement si a = 0 ou (a, b) est liée, donc finalement si et seulement si a et b sont liées.

3) D'après la question 1., φ est diagonalisable donc il existe une base $\mathcal{E}=(e_i)_{1\leqslant i\leqslant n}$ de \mathbb{R}^n pour laquelle $\varphi(e_i,e_j)=0$ pour tout $i\neq j$. Dans la base \mathcal{E} , la matrice M de φ est donc diagonale avec en ligne i et colonne i le réel $\varphi(e_i,e_i)$. Par hypothèse M est de rang 1 car φ l'est, tous les coefficients diagonaux $\varphi(e_i,e_i)$ de M sont donc nuls sauf un. Quitte à changer l'ordre des vecteurs de la base \mathcal{E} , on suppose $\mu=\varphi(e_1,e_1)\neq 0$ et $\varphi(e_i,e_i)=0$ pour tout i=2...n

Alors on pose $f = \sqrt{|\mu|}e^*$ avec e^* l'unique forme linéaire de \mathbb{R}^n qui envoie e_1 sur 1 et les e_i pour i de 2 à n sur 0 (i.e. e^* est l'application première coordonnée dans \mathcal{E}). On obtient alors $f \otimes f = |\mu|e^* \otimes e^*$ donc $\underline{\varphi} = f \otimes f$ si $\mu > 0$ et $\underline{\varphi} = -f \otimes f$, l'égalité des applications bilinéaires étant obtenue en observant qu'elles ont même matrice dans la base \mathcal{E} de \mathbb{R}^n .

- **4)** Avec les notations de la questions précédentes, si φ est de rang 1 alors il existe $\varepsilon=\pm 1$ et une forme linéaire f avec $\varphi=\varepsilon f\otimes f$. Ainsi pour tout x,y,z et w de \mathbb{R}^n , on a $\langle \varphi(x,y),\varphi(z,w)\rangle=\varphi(x,y)\varphi(z,w)=\varepsilon^2 f(x)\,f(y)\,f(z)\,f(w)=\varepsilon^2 f(x)\,f(w)\,f(z)\,f(y)=\langle \varphi(x,w),\varphi(z,y)\rangle$ Ainsi une forme bilinéaire de rang 1 est toujours plate.
- 5) Si φ est une forme bilinéaire plate non nulle alors via la question 1, elle est diagonalisable et il existe une base $\mathcal{E}=(e_i)_{1\leqslant i\leqslant n}$ de \mathbb{R}^n pour laquelle $\varphi(e_i,e_j)=0$ pour tout $i\neq j$. Dans la base \mathcal{E} , la matrice de φ est diagonale et non nulle (car φ est supposée non nulle), donc il existe ℓ avec $\varphi(e_\ell,e_\ell)\neq 0$. Comme φ est plate, on obtient

$$\forall i \in \{1, \cdots, n\} \text{ avec } i \neq \ell, \ \langle \varphi(e_\ell, e_\ell), \varphi(e_i, e_i) \rangle = \langle \varphi(e_\ell, e_i), \varphi(e_\ell, e_i) \rangle \text{ i.e. } \varphi(e_\ell, e_\ell) \cdot \varphi(e_i, e_i) = 0$$

Donc comme $\varphi(e_{\ell}, e_{\ell}) \neq 0$, on a $\varphi(e_i, e_i) = 0$ pour tout $i \neq \ell$. Ainsi la matrice de φ dans la base \mathcal{E} est diagonale et tous ses coefficients diagonaux sauf un (celui ligne ℓ) sont nuls donc elle est de rang 1 et donc φ est de rang 1.

B. Diagonalisation simultanée.

- 6) Si u_{i_0} admet un sous-espace propre (pour la valeur propre λ) de dimension n alors ce sous-espace propre est E tout entier car inclus dans E et de même dimension que E, et $u_{i_0} = \lambda Id$ donc u est une homothétie ce qui n'est pas. Ainsi les sous-espaces propres de u_{i_0} sont tous de dimension strictement inférieure à n.
- Redémontrons que si deux endomorphismes commutent, tout espace propre de l'un est stable par l'autre. Soit u un endomorphisme commutant avec u_{i_0} , alors pour tout x dans le sous-espace propre de u_{i_0} associé à la valeur propre μ , on a

$$u_{i_0}(u(x)) = (u_{i_0} \circ u)(x) = (u \circ u_{i_0})(x) = u(u_{i_0}(x)) = u(\mu x) = \mu u(x)$$
 par linéarité de u .

Ainsi u(x) appartient à $\ker(u_{i_0} - \mu Id)$, le sous-espace propre de u_{i_0} associé à la valeur propre μ . Ainsi tout sous-espace propre de u_{i_0} est stable par tout u_i (car u_i commute avec u_{i_0}).

7) • Si tous les endomorphismes u_i sont des homothéties alors dans toute base orthonormée de E, tous les u_i ont une matrice diagonale (même scalaire).

• Sinon, on choisit i_0 tel que u_{i_0} ne soit pas une homothétie, alors d'après le théorème spectral, E est somme directe orthogonale des sous-espaces propres de u_{i_0} .

Soit F un sous-espace propre de u_{i_0} , alors via la question $\mathbf{6}$, F est stable par tous les u_i donc on peut considérer les endomorphimes $\widetilde{u_i}^F$ induits sur F par les u_i .

Ces endomorphismes $\widetilde{u_i}^F$ sont autoadjoints car les u_i le sont, et commutent deux à deux car les u_j commutent deux à deux. Donc par hypothèse de récurrence comme F est de dimension strictement inférieure à n (via la question **6.**), il existe une base orthonormée \mathcal{B}_F de F dans laquelle les matrices de $\widetilde{u_i}^F$ sont toutes diagonales. La réunion (concaténation) des bases orthonormées \mathcal{B}_F de F, quand F décrit la famille finie des sous-espaces propres de u_{i_0} , donne une base \mathcal{B} orthonormée de E (car E est somme directe orthogonale de ces sous-espaces). Dans \mathcal{B} , la matrice de u_i est diagonale par blocs avec pour blocs les matrices $\widetilde{u_i}^F$ dans les bases \mathcal{B}_F des sous-espaces propres de u_{i_0} qui sont diagonales par choix des \mathcal{B}_F . Ainsi on a trouvé une base orthonormée de E dans laquelle tous les u_i ont une matrice diagonale.

• On a vu que le résultat que l'on veut prouver est vrai pour $\dim(E) = 1$, qu'il est récurrent (s'il est vrai pour tout E avec $\dim(E) < n$ alors il reste vrai pour tout E de dimension n donc pour tout E de dimension strictement inférieure à n+1). Donc par le principe de récurrence, il est vrai pour tout n.

C. Vecteurs réguliers.

8) • Si B est inversible alors $\det(A+tB) = \det((AB^{-1}+tI)B) = \det(B)\det(AB^{-1}+tI)$ or A+tB est inversible si et seulement si $\det(A+tB) \neq 0$ donc comme $\det(B) \neq 0$, on trouve que A+tB est inversible si et seulement si $\det(AB^{-1}+tI) \neq 0$ i.e. -t n'est pas racine du polynôme caractéristique de AB^{-1} qui admet au plus n racines donc A+tB est inversible pour tout t de $\mathbb R$ sauf pour au plus n valeurs.

Si A est inversible alors $\det(A) \neq 0$ et pour tout $t \neq 0$, on a $\det(A + tB) = \det(t(t^{-1}I + BA^{-1})A) = t^n \det(A) \det(t^{-1}I + BA^{-1})$. Donc pour $t \neq 0$, A + tB est inversible si et seulement si $\det(A + tB) \neq 0$ i.e. $\det(t^{-1}I + BA^{-1}) \neq 0$ i.e. $-t^{-1}$ non racine du polynôme caractéristique de BA^{-1} (qui en admet au plus n). Ainsi A + tB est inversible sauf peut-être pour n + 1 valeurs de t.

Finalement si A ou B est inversible, A+tB est inversible sauf pour un nombre fini de valeurs de t.

Autre méthode.

Comme d'une part le déterminant d'une matrice est polynomial en les coefficients de la matrice, et d'autre part les coefficients de A+tB sont polynomiaux en t, il résulte que $\det(A+tB)$ est un polynôme P en t. Or si A est inversible, $P(0) = \det(A) \neq 0$, et sinon B est inversible et $P(0) = \det(A) = 0$ avec $t^n P(1/t) = \det(tA+B)$ qui tend vers $\det(B) \neq 0$ quand t tend vers 0 ce qui prouve que $t^n P(1/t)$ donc P(1/t) n'est pas nul pour t assez grand, ainsi P n'est pas un polynôme constant. Donc P admet un nombre fini de racines et $P(t) = \det(A+tB)$ est non nul sauf pour un nombre fini de valeurs de t, ainsi A+tB est inversible sauf pour ce nombre fini de valeurs de t.

9. La famille (a_1, a_2, \dots, a_r) de \mathbb{R}^p étant libre, on a $r \leq p$ et via le théorème de la base incomplète, on complète cette famille en une base (a_1, a_2, \dots, a_p) de \mathbb{R}^p . On complète la famille (b_1, \dots, b_r) par des vecteurs nuls en (b_1, \dots, b_p) .

On note A la matrice de (a_1,a_2,\cdots,a_p) dans la base canonique de \mathbb{R}^p (i.e. la matrice dont la jème colonne est formée des coordonnées de a_j dans la base canonique de \mathbb{R}^p) et B celle de (b_1,b_2,\cdots,b_p) dans la base canonique de \mathbb{R}^p . La première famille étant libre, A est inversible donc via la question $\mathbf{8}$, la matrice A+tB est inversible sauf pour un nombre fini de valeurs de t (disons A+tB non inversible pour t dans t). Or t0 or t1 est la matrice de t2, cette famille est libre et la sous-famille t3, t4, t5, t6, t7, and t7 aussi.

Ainsi $(a_1 + tb_1, a_2 + tb_2, \dots, a_r + tb_r)$ est libre sauf peut-être pour un nombre fini de valeurs de t (celles de J).

10. Soit x dans \mathbb{R}^n et y dans $\ker \tilde{\varphi}(v)$ i.e. $\varphi(v,y) = 0$. Comme v est régulier pour φ , l'image $\operatorname{Im} \tilde{\varphi}(v)$ est de

dimension q, donc il existe une famille libre (e_1,\cdots,e_q) telle que $(\tilde{\varphi}(v)(e_i))_{1\leqslant i\leqslant q}$ engendre $\mathrm{Im}\tilde{\varphi}(v)$. Supposons (par l'absurde) que $\varphi(x,y)$ n'est pas dans $\mathrm{Im}\tilde{\varphi}(v)$. Ainsi la famille $(\tilde{\varphi}(v)(e_1),\cdots,\tilde{\varphi}(v)(e_q),\varphi(x,y))$ i.e. $(\varphi(v,e_1),\cdots\varphi(v,e_q),\varphi(x,y))$ est libre. Donc via la question $\mathbf{9}$., il existe un voisinage V de 0 tel que pour tout $t\in V$, la famille $f=(\varphi(v,e_1)+t\varphi(x,e_1),\cdots\varphi(v,e_q)+t\varphi(x,e_q),\varphi(x,y)+t0)$ est libre. Par linéarité de φ , la famille $f=(\varphi(v+tx,e_1),\cdots\varphi(v+tx,e_q),\varphi(x,y))$ est libre, pour tout t dans V. Donc en choisissant s dans V avec $s\neq 0$, la famille $(\varphi(v+sx,e_1),\cdots\varphi(v+sx,e_q),s\varphi(x,y))$ est libre et comme $\varphi(v,y)=0$, on obtient la liberté de $(\varphi(v+sx,e_1),\cdots\varphi(v+sx,e_q),\varphi(v+sx,y))$ i.e. de $g(e_1),\cdots g(e_q),g(y)$ avec $g=\tilde{\varphi}(v+sx)$. Ainsi $\mathrm{Im}g=\mathrm{Im}\tilde{\varphi}(v+sx)$ est de dimension au moins 1+q ce qui contredit la définition de q. Donc $\varphi(x,y)$ appartient à $\mathrm{Im}\tilde{\varphi}(v)$.

11. • Procédons par double inclusion.

Soit x dans $\ker \varphi$. Alors par définition $\tilde{\varphi}(x) = 0$ donc $\varphi(x, v) = \tilde{\varphi}(x)(v) = 0$ et par symétrie de φ , on a bien $\tilde{\varphi}(v)(x) = \varphi(v, x) = \tilde{\varphi}(x)(v) = 0$. Donc x est dans $\ker \tilde{\varphi}(v)$. Ainsi $\ker \varphi \subset \ker \tilde{\varphi}(v)$.

Réciproquement, soit y dans $\ker \tilde{\varphi}(v)$. Fixons x dans \mathbb{R}^n . D'après la question 10., le vecteur $\varphi(x,y)$ est dans $\operatorname{Im} \tilde{\varphi}(v)$ i.e. il existe z_x dans \mathbb{R}^n avec $\varphi(x,y)=\varphi(v,z_x)$. Ainsi dans \mathbb{R}^p , on a

 $\langle \varphi(x,y,\varphi(x,y)\rangle = \langle \varphi(v,z_x),\varphi(x,y)\rangle = \langle \varphi(v,y),\varphi(x,z_x)\rangle$ (car φ est plate).

Or $\varphi(v,y)=(\tilde{\varphi}(v))(y)=0$ donc $\|\varphi(x,y)\|^2=\langle\varphi(x,y),\varphi(x,y)\rangle=0$ et donc $\|\varphi(x,y)\|=0$ i.e. par séparation d'une norme $(\tilde{\varphi}(y))(x)=\varphi(x,y)=0$. Ainsi tout x est dans le noyau de $\tilde{\varphi}(y)$ donc $\tilde{\varphi}(y)$ est nul donc par définition y est dans $\ker\varphi$.

Finalement, pour tout vecteur régulier v de φ , les noyaux $\ker \tilde{\varphi}(v)$ et $\ker \varphi$ sont égaux.

- Si $\ker \varphi = \{0\}$ alors en considérant un vecteur régulier v pour φ , l'application $\tilde{\varphi}(v)$ est linéaire de \mathbb{R}^n dans \mathbb{R}^p , injective car de noyau $\ker \tilde{\varphi}(v) = \ker \varphi$ réduit à $\{0\}$. Donc $\dim \mathbb{R}^p \geqslant \dim \mathbb{R}^n$ i.e. $p \geqslant n$.
- 12. Soit v régulier pour φ . Alors $\mathrm{Im} \tilde{\varphi}(v)$ est de dimension q donc il existe une famille libre (e_1, \cdots, e_q) telle que $(\tilde{\varphi}(v)(e_1), \cdots, \tilde{\varphi}(v)(e_q))$ est une base de $\mathrm{Im} \tilde{\varphi}(v)$. Via le théorème de la base incomplète, il existe des vecteurs $f_1, \cdots f_r$ tels que $\mathfrak{B} = (\tilde{\varphi}(v)(e_1), \cdots, \tilde{\varphi}(v)(e_q), f_1, \cdots, f_r)$ est une base de \mathbb{R}^p .

Alors par linéarité de $x\mapsto \tilde{\varphi}(x)$, l'application $\Psi_v: x\in\mathbb{R}^n\mapsto \det_{\mathbb{B}}(\tilde{\varphi}(x)(e_1),\cdots,\tilde{\varphi}(x)(e_q),f_1,\cdots,f_r)$ est polynômiale en les coordonnées de x dans la base canonique de \mathbb{R}^n , donc continue. Elle vaut 1 en v donc il existe un voisinage \mathcal{W}_v de v dans \mathbb{R}^n sur lequel Ψ_v ne s'annule pas. Ainsi pour tout x dans \mathcal{W}_v , la famille $(\tilde{\varphi}(x)(e_1),\cdots,\tilde{\varphi}(x)(e_q),f_1,\cdots,f_r)$ est libre donc la sous-famille $(\tilde{\varphi}(x)(e_1),\cdots,\tilde{\varphi}(x)(e_q))$ aussi ce qui prouve que $\mathrm{Im}\tilde{\varphi}(x)$ est de dimension au moins q donc q car q est la dimension maximale d'une telle image par définition. Ainsi x est un vecteur régulier.

Finalement tout vecteur régulier admet un voisinage formé uniquement de vecteurs réguliers donc l'ensemble \mathcal{V} des vecteurs réguliers pour φ est un ouvert de \mathbb{R}^n .

13. Soit x un vecteur quelconque de \mathbb{R}^n et v un vecteur régulier pour φ . Avec les notations de la question précédente, la matrice de \mathcal{B} dans \mathcal{B} i.e. $B=I_p$ est inversible. Donc en notant A la matrice de la famille $(\tilde{\varphi}(x)(e_1),\cdots,\tilde{\varphi}(x)(e_q),f_1,\cdots,f_r)$ dans \mathcal{B} , la question 8. assure que A+tB est inversible pour tout réel t sauf peut-être ceux d'un ensemble fini T. De plus A+tB est, par bilinéarité de φ , la matrice de $(\tilde{\varphi}(x+tv)(e_1),\cdots,\tilde{\varphi}(x+tv)(e_q),(1+t)f_1,\cdots,(1+t)f_r)$ dans \mathcal{B} .

Notons $\varepsilon>0$ le minimum de $T\cap\mathbb{R}_+^*$ si cet ensemble est non vide, et 1 sinon. Alors pour tout entier m>1/T, la matrice $A+\frac{1}{m}B$ de $(\tilde{\varphi}(x+v/m)(e_1),\cdots,\tilde{\varphi}(x+v/m)(e_q),f_1,\cdots,f_r)$ dans $\mathcal B$ est inversible donc $(\tilde{\varphi}(x+v/m)(e_1),\cdots,\tilde{\varphi}(x+v/m)(e_q))$ est libre et comme dans la question $\mathbf 12$. cela permet de conclure que x+v/m est un vecteur régulier pour φ . Ainsi la suite $(x+v/m)_{m>[1/T]+1}$ (avec $[\cdot]$ la partie entière) est une suite de vecteurs réguliers pour φ qui converge vers x.

Cela prouve que tout vecteur x est dans l'adhérence de \mathcal{V} i.e. $\underline{\mathcal{V}}$ est dense dans \mathbb{R}^n .

D. Le cas p = n de noyau nul.

- 14. Comme φ est bilinéaire, symétrique et plate, et v est un vecteur régulier pour φ , la question 11. assure que le noyau $\ker \tilde{\varphi}(v)$ vaut $\ker \varphi$ donc est réduit au vecteur nul. Ainsi l'application linéaire $\tilde{\varphi}(v)$ est injective et est un endomorphisme de \mathbb{R}^n (car p=n donc $\mathbb{R}^n=\mathbb{R}^p$). Donc (par le théorème du rang par exemple) l'endomorphisme $\tilde{\varphi}(v)$ est un automorphisme.
- **15.** Pour tout u et w de \mathbb{R}^n , on a, en notant $u' = [\tilde{\varphi}(v)]^{-1}(u)$ et $w' = [\tilde{\varphi}(v)]^{-1}(w)$: $\langle \Psi(x)(u), w \rangle = \langle \tilde{\varphi}(x)(u'), \tilde{\varphi}(v)(w') \rangle = \langle \varphi(x, u'), \varphi(v, w') \rangle$ or comme φ est plate, on a $\langle \varphi(x, u'), \varphi(v, w') \rangle = \langle \varphi(x, w'), \varphi(v, u') \rangle$ donc par ce qui précède $\langle \Psi(x)(u), w \rangle = \langle \Psi(x)(w), u \rangle = \langle u, \Psi(x)(w), \rangle$ (par symétrie du produit scalaire). Ainsi $\Psi(x)$ est bien autoadjoint pour tout x de \mathbb{R}^n .
- **16.** Pour tout x et y de \mathbb{R}^n et tout w et z de $\mathbb{R}^p = \mathbb{R}^n$, on a, toujours en notant $w' = [\tilde{\varphi}(v)]^{-1}(w)$ et $z' = [\tilde{\varphi}(v)]^{-1}(z)$

```
\langle (\Psi(x) \circ \Psi(y))(z), w \rangle = \langle (\Psi(y))(z), \Psi(x)(w) \rangle \text{ car } \Psi(x) \text{ est autoadjoint via } \mathbf{15.}
= \langle \varphi(y, z'), \varphi(x, w') \rangle \text{ par definition de } \Psi
= \langle \varphi(y, w'), \varphi(x, z') \rangle \text{ car } \varphi \text{ est plate}
= \langle \Psi(y)(w), \Psi(x)(z) \rangle
= \langle w, (\Psi(y) \circ \Psi(x))(z) \rangle \text{ car } \Psi(y) \text{ est autoadjoint via } \mathbf{15.}
= \langle (\Psi(y) \circ \Psi(x))(z), w \rangle \text{ par symétrie du produit scalaire}
```

Ainsi par linéarité de $\langle \cdot, w \rangle$, le vecteur $(\Psi(x) \circ \Psi(y))(z) - (\Psi(y) \circ \Psi(x))(z)$ est orthogonal à tout vecteur w de \mathbb{R}^n donc est nul, et ce pour tout vecteur z de \mathbb{R}^n donc $\Psi(x) \circ \Psi(y) = \Psi(y) \circ \Psi(x)$.

- Les $\Psi(x)$ forment une famille d'endomorphismes de \mathbb{R}^n , autodajoints (question 15. qui commutent 2 à 2 donc via les questions de \mathbf{B}_{\bullet} , il existe une base orthonormée (e_1, \dots, e_n) de \mathbb{R}^n dans laquelle tous les $\Psi(x)$ ont une matrice diagonale.
- 17. Via la question 14., $\tilde{\varphi}(v)$ est un automorphisme de \mathbb{R}^n donc $(f_1 = (\tilde{\varphi}(v))^{-1}(e_1), \cdots, f_n = (\tilde{\varphi}(v))^{-1}(e_n))$ est une base de \mathbb{R}^n .

Or pour tout $i=1\ldots n$, chaque e_j est vecteur propre de $\Psi(f_i)$ via la question 16. donc il existe $\lambda_i(j)\in\mathbb{R}$ avec $(\Psi(f_i))(e_j)=\lambda_i(j)\,e_j$.

Ainsi pour tout $i \neq j$ dans $\{1, \ldots, n\}$, on a : $\varphi(f_i, f_j) = (\tilde{\varphi}(f_i)) ((\tilde{\varphi}(v))^{-1}(e_j)) = \Psi(f_i)(e_j) = \lambda_i(j) e_j$ et par symétrie de φ , on a aussi $\varphi(f_i, f_j) = \varphi(f_j, f_i) = \lambda_i(i) e_i$.

Mais la famille (e_i, e_j) est libre (comme sous-famille d'une base de \mathbb{R}^n donc $\lambda_i(j) e_j = \lambda_j(i) e_i$ impose $\lambda_i(i) = \lambda_i(j) = 0$ donc $\varphi(f_i, f_j) = 0$.

Finalement à l'aide de la base $((\tilde{\varphi}(v))^{-1}(e_1), \cdots, (\tilde{\varphi}(v))^{-1}(e_n))$ de \mathbb{R}^n , on a obtenu que φ est diagonalisable.