Composition de Mathématiques D - (U)

(Durée: 6 heures)

L'utilisation des calculatrices n'est pas autorisée pour cette épreuve

Sujet saisi par Michel Quercia (michel.quercia@prepas.org) d'après l'original.

* * *

Polynômes hyperboliques

Préambule

Si $\mathbb{K}=\mathbb{R}$ ou \mathbb{C} , on note $\operatorname{Pol}(\mathbb{K}^n)$ l'algèbre des fonctions polynomiales sur \mathbb{K}^n , dont la base canonique est constituée des fonctions monômes $x\mapsto x_1^{m_1}\dots x_n^{m_n}$, où $m_1,\dots,m_n\in\mathbb{N}$ et $x_1,\dots x_n$ sont les coordonnées de x. Par convention, on aura toujours $x_j^0=1$, même lorsque $x_j=0$. L'écriture d'une fonction polynomiale comme combinaison linéaire de fonctions monômes étant unique, on utilisera par la suite les mots monôme et polynôme pour désigner des fonctions monômes ou polynomiales.

Le $degr\acute{e}$ du monôme $x_1^{m_1}\dots x_n^{m_n}$ est l'entier $m_1+\dots+m_n$. Un polynôme $P\in Pol(\mathbb{K}^n)$ est dit $homog\grave{e}ne$ de degré d s'il est combinaison linéaire des monômes de degré d. Les polynômes homog\grave{e}nes de degré d sur \mathbb{K}^n forment donc un espace vectoriel que l'on note $Hom_d(\mathbb{K}^n)$. Par exemple, $Hom_2(\mathbb{K}^n)$ est l'ensemble des formes quadratiques sur \mathbb{K}^n .

Si V est un espace vectoriel sur \mathbb{K} de dimension finie n, le choix d'une base \mathcal{B} de V permet d'identifier V à \mathbb{K}^n ; on peut donc parler de polynômes et de polynômes homogènes sur V. On admettra que ces deux notions sont indépendantes du choix de \mathcal{B} , et on notera $\operatorname{Pol}(V)$ (respectivement $\operatorname{Hom}_d(V)$) l'espace vectoriel formé des polynômes (respectivement des polynômes homogènes de degré d) sur V.

Si $j, k \in \mathbb{Z}$ sont deux entiers, on notera $[\![j,k]\!]$ l'ensemble des entiers $i \in \mathbb{Z}$ tels que $j \leqslant i \leqslant k$. Si k < j, $[\![j,k]\!]$ est donc vide.

1) Si
$$P \in Hom_d(\mathbb{R}^n)$$
 et $\nu \in \mathbb{R}^n$, calculer $\sum_{j=1}^n \nu_j \frac{\partial P}{\partial x_i}(\nu)$ en fonction de $P(\nu)$.

Le problème traite des polynômes hyperboliques. Soit V un espace vectoriel réel de dimension $n \geqslant 1$, soient $d \geqslant 1$ un entier et $a \in V$ un vecteur non nul ; on dit qu'un polynôme homogène p de degré d sur V (donc un élément de $\text{Hom}_d(V)$) est hyperbolique dans la direction a si d'une part $p(a) \neq 0$, et d'autre part, pour tout vecteur $x \in \mathbb{R}^n$, les racines du polynôme à une variable

$$t \mapsto p(ta - x)$$

sont réelles. Remarquons que si $s \in \mathbb{R} \setminus \{0\}$, p est encore hyperbolique dans la direction de sa ; ce qui explique l'emploi du mot direction dans la terminologie ci-dessus.

2) Vérifier que dans cette définition, les racines de $t \mapsto p(ta-x)$, comptées avec leurs multiplicités, sont au nombre de d.

Ces racines seront notées $\lambda_1(x,\alpha),\dots,\lambda_d(x,\alpha)$ et rangées dans l'ordre croissant :

$$\lambda_1(x, \alpha) \leqslant \ldots \leqslant \lambda_d(x, \alpha).$$

x-ens.tex - dimanche 21 avril 2013

3) Exprimer p(x) au moyen de p(a) et des $\lambda_j(x, a)$. Si $s \in \mathbb{R}$, exprimer en fonction du signe de s les $\lambda_j(sx, a)$ et les $\lambda_j(x + sa, a)$ au moyen des $\lambda_j(x, a)$.

I Exemples

- 4) Montrer que la fonction $S\mapsto \det(S)$ est un polynôme homogène sur l'espace $\operatorname{Sym}_m(\mathbb{R})$ des matrices symétriques réelles à m lignes et m colonnes, et que ce polynôme est hyperbolique dans une direction convenable.
- 5) Pour quelles valeurs de l'entier k compris entre 1 et n, la forme quadratique

$$q(x) = \sum_{j=1}^{k} x_j^2 - \sum_{j=k+1}^{n} x_j^2$$

est-elle hyperbolique sur \mathbb{R}^n , dans une direction convenable?

6) Si $d \ge 2$ et si $p \in \text{Hom}_d(V)$ est hyperbolique dans une direction a, montrer que la formule

$$x \mapsto \sum_{j=1}^{n} a_{j} \frac{\partial p}{\partial x_{j}}(x)$$

définit un polynôme hyperbolique dans la même direction. On notera ce polynôme $a \cdot \nabla p$.

7) Soit $n \geqslant 2$ et $d \in [\![1,n]\!]$ des entiers. On définit sur \mathbb{R}^n de d-ème polynôme symétrique élémentaire Σ_d comme suit

$$\Sigma_{d}(x) = \sum_{1 \leqslant j_1 < \ldots < j_d \leqslant n} x_{j_1} \ldots x_{j_d}.$$

Montrer que Σ_d est hyperbolique dans la direction e = (1, ..., 1).

II Continuité des racines

- 8) Soit n et d deux entiers strictement positifs, et $F: \mathbb{R}^n \to \mathbb{R}^d$ une fonction. On se donne un élément \bar{x} de \mathbb{R}^n . On suppose que, pour toute suite (x^m) dans \mathbb{R}^n qui converge vers \bar{x} , il existe une sous-suite $(x^{\varphi(k)})$ (avec φ strictement croissante) telle que la suite $(F(x^{\varphi(k)}))$ converge vers $F(\bar{x})$. Montrer que F(x)0 est continue en \bar{x} 1.
- 9) Soit $p \in \text{Hom}_d(V)$ un polynôme hyperbolique dans une direction a, où $d \geqslant 1$ et $\dim(V) = n \geqslant 1$. On définit l'application

$$\Lambda: \, \left\{ \begin{matrix} V & \longrightarrow & \mathbb{R}^d \\ x & \longmapsto & (\lambda_1(x,\alpha),\dots,\lambda_d(x,\alpha)). \end{matrix} \right.$$

- a) Si une suite (x^m) de V est bornée, montrer que les suites $(\lambda_i(x^m, a))$ sont bornées elles-aussi.
- b) En utilisant la question 8), montrer que Λ est continue.

III Le cône du futur

Si $p \in \text{Hom}_d(V)$ est hyperbolique dans la direction a, on désigne par C(p,a) l'ensemble des vecteurs $x \in V$ qui satisfont $\lambda_1(x,a) > 0$.

10) Vérifier que C(p,a) est étoilé par rapport à a. Montrer que $C(a \cdot \nabla p, a) \supset C(p,a)$.

On suppose jusqu'à la fin de cette partie que pour tout x non colinéaire à a, on a les inégalités strictes

$$\lambda_1(x, \alpha) < \ldots < \lambda_d(x, \alpha),$$

et on dit alors que p est strictement hyperbolique dans la direction a.

11) Soit $b \in C(p, a)$ et $x \in V$. Si $j \in [1, d]$, montrer que la fonction

$$\phi_j: \, \left\{ \begin{array}{ll} \mathbb{R} & \longrightarrow & \mathbb{R} \\ t & \longmapsto & \lambda_j(tb+x,a) \end{array} \right.$$

est surjective. Lorsque $d\geqslant 2$, à quelle condition existe-t-il deux indices distincts j et k et un nombre $t\in\mathbb{R}$ tels que $\phi_i(t)=\phi_k(t)$?

- 12) En déduire que p est strictement hyperbolique dans la direction b.
- 13) Montrer que les φ_i sont strictement croissantes.
- 14) Soit $x, y \in V$. Montrer que $t \mapsto \lambda_1(ty + x, a) t\lambda_1(y, a)$ est croissante. En déduire que $x \mapsto \lambda_1(x, a)$ est concave et que C(p, a) est un cône convexe.
- 15) Soit $x, b \in C(p, a)$. Montrer que $\lambda_1(x, b) > 0$.
- 16) En déduire que si $b \in C(p, a)$ alors C(p, b) = C(p, a).

IV Le cas général

On admet dans cette partie l'énoncé suivant (légèrement moins précis qu'un lemme de Rouché) :

Soient $P,Q\in\mathbb{C}[X]$ deux polynômes. Soit $\omega\in\mathbb{C}$ un nombre complexe et $\epsilon>0$ un nombre réel. On suppose que $P(\omega)=0$ et que

$$\sup\{|Q(z)|; |z-\omega|=\varepsilon\} < \inf\{|P(z)|; |z-\omega|=\varepsilon\}.$$

Alors P + Q a au moins une racine ω' telle que $|\omega' - \omega| < \epsilon$.

- 17) Soit $R = R(x,y) \in Pol(\mathbb{C}^2)$ un polynôme s'annulant en (0,0). On suppose que le polynôme $x \mapsto R(x,0)$ n'est pas nul et on note m la multiplicité de sa racine x = 0. De même, on suppose que le polynôme $y \mapsto R(0,y)$ n'est pas nul et on note r la multiplicité de sa racine y = 0.
 - a) Montrer qu'il existe des entiers $\alpha, \beta > 0$ premiers entre eux, et deux polynômes R_0 et R_1 vérifiant les conditions suivantes :
 - $R(x,y) = R_0(x,y) + R_1(x,y)$;
 - $R_0(x,y) = x^m Q_0(y^{\alpha}/x^{\beta})$, où $Q_0 \in \mathbb{C}[X]$ vérifie $0 < \beta \deg(Q_0) \leqslant m$;
 - R_1 est une combinaison linéaire de monômes x^iy^j pour lesquels $\alpha i + \beta j \geqslant \alpha m + 1$. Vérifier que $Q_0(0) \neq 0$.
 - b) Monter qu'il existe des polynômes $\widehat{R} \in \mathbb{C}[X]$ et $S \in Pol(\mathbb{C}^2)$ satisfaisant l'identité

$$R(zu^{\alpha}, u^{\beta}) = u^{\alpha m}(\widehat{R}(z) + uS(z, u)).$$

Montrer de plus que \widehat{R} possède une racine $\omega \neq 0$.

- c) Si ω n'est pas réelle, montrer que pour tout $u \in \mathbb{C}$ assez petit, il existe $z \in \mathbb{C} \setminus \mathbb{R}$ tel que $R(zu^{\alpha}, u^{\beta}) = 0$.
- 18) On reprend les notations de la question précédente et on suppose que lorsque y est réel, les racines de R(x, y) sont toutes réelles.
 - a) Montrer que les racines de \widehat{R} sont toutes réelles.
 - b) Montrer que l'ensemble des racines de \widehat{R} est stable par multiplication par $e^{2i\alpha\pi/\beta}$. En déduire que $\beta \leq 2$.
 - c) En considérant aussi les points de la forme $(zu^{\alpha}, -u^{\beta})$, montrer qu'en fait $\beta = 1$.
 - d) En déduire que $r \geqslant m$.
- 19) Soit p un polynôme homogène de degré $d \ge 1$ sur un espace vectoriel réel V de dimension $n \ge 2$, hyperbolique dans la direction de $a \ne 0$. On ne suppose pas que p soit strictement hyperbolique. On se donne $b \in C(p, a)$.
 - a) Soit $x \in V$ et $s^* \in \mathbb{R}$; on utilise les fonctions ϕ_j définies à la question III-11). Soit t^* une racine réelle de $t \mapsto p(s^*a tb x)$, de multiplicité r. Montrer qu'au plus r d'entre les fonctions ϕ_j prennent la valeur s^* en t^* .
 - b) En déduire que p est hyperbolique dans la direction b.

Les preuves des autres résultats de la partie III restant valables, on pourra utiliser par la suite le fait que

- $x \mapsto \lambda_1(x, a)$ est concave et C(p, a) est un cône convexe ;
- si $b \in C(p, a)$, alors C(p, b) = C(p, a).

V L'inégalité de Gårding sur le cône C(p,a)

Soit V un espace vectoriel réel de dimension finie n et $d \ge 2$ un entier. Une application

$$M:V^d=\underbrace{V\times\ldots\times V}_{d\text{ copies}}\to\mathbb{R}$$

est dite symétrique si

$$M(x_{\sigma(1)},\ldots,x_{\sigma(d)})=M(x_1,\ldots,x_d),$$

pour tous vecteurs $x_1, \ldots, x_d \in V$ et pour toute permutation σ de [1, n].

Une forme d-linéaire symétrique est une application M comme ci-dessus, qui satisfait de plus

$$M(\lambda x_1 + \mu y_1, x_2, \dots, x_d) = \lambda M(x_1, x_2, \dots, x_d) + \mu M(y_1, x_2, \dots, x_d),$$

pour tous vecteurs $y_1, x_1, \dots, x_d \in V$ et pour tous $\lambda, \mu \in \mathbb{R}.$

Soit M une forme d-linéaire symétrique. La fonction p définie par

$$p(x) = M(x, ..., x), \quad \forall x \in V$$

est alors polynomiale, homogène de degré d. On suppose que p est hyperbolique dans la direction de a, un vecteur non nul.

- **20**) Soit $b \in C(p, a)$.
 - a) Prouver l'identité $dM(x,b,...,b) = p(b) \sum_{j=1}^{d} \lambda_j(x,b), \forall x \in V.$ b) En déduire que $M(a,b,...,b) \ge p(a)^{1/d} p(b)^{(d-1)/d}.$
 - b) En déduire que M(a, b, ..., b) ≥ p(a)^{1/d}p(b)^{(d-1)/d}.
 On pourra admettre sans démonstration l'inégalité arithmético-géométrique : si u₁, ..., u_d sont des nombres réels positifs, alors

$$\frac{1}{d}(u_1+\ldots+u_d)\geqslant (u_1\ldots u_d)^{1/d}.$$

- 21) Vérifier que $x \mapsto M(a, x, \dots, x)$ est un polynôme hyperbolique sur V, dans la direction de a.
- 22) Montrer que pour tout choix des vecteurs x^1, \ldots, x^d dans C(p, a), on a

$$M(x^1,\dots,x^d)\geqslant \prod_{j=1}^d p(x^j)^{1/d}.$$

On pourra faire un raisonnement par récurrence sur le degré d.

- 23) Applications:
 - a) Soit $m \ge 1$ et B la forme polaire d'une forme quadratique q définie positive sur \mathbb{R}^n . Soit $\alpha, \beta \in \mathbb{R}$ et $u, v \in \mathbb{R}^n$. Si $\alpha > \sqrt{q(u)}$ et $\beta > \sqrt{q(v)}$, montrer que

$$\alpha\beta - B(u, v) \geqslant \sqrt{(\alpha^2 - q(u))(\beta^2 - q(v))}$$
.

b) Si $A \in \mathcal{M}_d(\mathbb{R})$ est une matrice carrée, on définit son permanent

$$\operatorname{per}(A) = \sum_{\rho \in \operatorname{Bij}_d} \alpha_{1\rho(1)} \dots \alpha_{d\rho(d)},$$

où Bij_d désigne l'ensemble des bijections de $\{1,\ldots,d\}$ dans lui-même. Si A est à coefficients positifs, montrer l'inégalité

$$per(A) \geqslant (d!) \Big(\prod_{1 \le i, i \le d} a_{ij} \Big)^{1/d}.$$

VI Concavité de
$$p^{1/d}$$
 sur le cône $C(p, a)$

On reprend les notations de la partie V. On pourra admettre que pour tout polynôme homogène p de degré d sur V, il existe une forme d-linéaire symétrique M sur V telle que p(x) = M(x, ..., x) pour tout x dans V.

24) Soit $x, y \in C(p, a)$. En exprimant p(x + y) au moyen de M, montrer que

$$p(x + y) \ge (p(x)^{1/d} + p(y)^{1/d})^d$$
.

En déduire que la fonction $x \mapsto p(x)^{1/d}$ est concave sur C(p, a).

25) Montrer que l'ensemble des matrices symétriques définies positives à d lignes et d colonnes est un cône convexe, sur lequel l'application $S \mapsto (\det S)^{1/d}$ est concave.

VII Inégalités de Weyl

On considère dans cette partie un polynôme homogène p sur un espace vectoriel V de dimension $n \geqslant 3$. On suppose que p est strictement hyperbolique (voir III pour cette notion) dans la direction de a, de degré $d \geqslant 2$. Comme on ne considérera pas d'autre direction d'hyperbolicité que a, on notera $\lambda_r(x)$ au lieu de $\lambda_r(x,a)$. On se donne trois indices $i,j,k\in [\![1,d]\!]$ vérifiant $j\leqslant i$ et k+1=i+j. On suppose, jusqu'à la question 30 qu'il existe deux vecteurs $x,y\in V$ tels que

$$\lambda_k(x+y) < \lambda_i(x) + \lambda_j(y)$$
.

- **26**) Montrer que nécessairement, $k \ge 2$.
- 27) Montrer qu'il existe $u, v \in V$ satisfaisant

$$\lambda_k(u+v) < \lambda_i(u), \qquad \lambda_r(v) < 0 \text{ si } r < j, \qquad \lambda_r(v) > 0 \text{ si } r \geqslant j.$$

- 28) On choisit un élément λ^* de l'intervalle $]\lambda_k(u+\nu), \lambda_i(u)[$, et on considère les fonctions $\phi_r: \mathbb{R} \to \mathbb{R}$ définies par $\phi_r(t) = \lambda_r(u+t\nu), r \in \llbracket 1, d \rrbracket$. En examinant les valeurs de ϕ_r en t=0, t=1 et au voisinage de $\pm \infty$, donner un minorant du nombre de solutions de l'équation $\phi_r(t) = \lambda^*$. Ce minorant dépend de l'indice r.
- 29) a) En déduire que le nombre de racines du polynôme $t\mapsto p(\lambda^*a-u-t\nu)$ est minoré par

$$\begin{split} D = & & \operatorname{card}([\![j,d]\!] \cap [\![1,d+1-j]\!]) \\ & + & \operatorname{card}([\![1,j-1]\!] \cap [\![d+2-j,d]\!]) \\ & + & 2\operatorname{card}([\![1,j-1]\!] \cap [\![1,d+1-j]\!] \cap [\![i,d]\!]) \\ & + & 2\operatorname{card}([\![j,d]\!] \cap [\![d+2-j,d]\!] \cap [\![1,k]\!]) \\ & + & 2\operatorname{card}([\![j,d]\!] \cap [\![1,d+1-j]\!] \cap [\![i,k]\!]). \end{split}$$

b) Simplifier cette identité en

$$D = card([[j, d+1-j]]) + 2 card([[d+2-j, k]]) + 2 card([[j, d+1-j]] \cap [[i, k]]).$$

- **30)** Montrer que D = d + 2.
- 31) Finalement, en conclure que si des entiers $i, j, \ell \in [1, d]$ sont tels que $\ell \geqslant i + j 1$, alors on a

$$\lambda_{\ell}(x+y) \geqslant \lambda_{i}(x) + \lambda_{i}(y), \quad \forall x, y \in V.$$

32) Cette inégalité est-elle encore vraie lorsque le polynôme hyperbolique p n'est pas strictement hyperbolique?

* *

Corrigé

Préambule

- 1) Décomposer P en monômes. On obtient $\sum_{j=1}^n \nu_j \frac{\partial P}{\partial x_j}(\nu) = dP(\nu)$.
- 2) $p(ta-x) = \sum_{m} \lambda_m (ta_1 x_1)^{m_1} \dots (ta_n x_n)^{m_n} = t^d p(a) + \text{(termes de degré inférieur)}.$ Donc p(ta-x) est de degré d en t; il admet exactement d racines dans $\mathbb C$ et on sait qu'elles sont réelles.
- 3) $p(ta x) = p(a)(t \lambda_1(x, a)) \dots (t \lambda_d(x, a))$ donc $p(-x) = (-1)^d p(a) \prod_{i=1}^d \lambda_i(x, a)$ et

$$p(x) = (-1)^d p(-x) = p(a) \prod_{j=1}^d \lambda_j(x, a).$$

Pour $s \neq 0$,

$$\begin{split} p(\alpha) \prod_j (t-\lambda_j(sx,\alpha)) &= p(t\alpha-sx) \\ &= s^d p((t/s)\alpha-x) \\ &= s^d p(\alpha) \prod_j ((t/s)-\lambda_j(x,\alpha)) \\ &= p(\alpha) \prod_i (t-s\lambda_j(x,\alpha)). \end{split}$$

Par identifications des factorisations de p(ta - x), les listes $(\lambda_j(sx, a))$ et $(s\lambda_j(x, a))$ coïncident à l'ordre près, ce qui donne :

$$\lambda_j(sx,\alpha) = s\lambda_j(x,\alpha) \text{ si } s > 0, \quad \lambda_j(sx,\alpha) = s\lambda_{d+1-j}(x,\alpha) \text{ si } s < 0, \quad \lambda_j(sx,\alpha) = 0 \text{ si } s = 0.$$

On obtient de même $\lambda_i(x + sa, a) = \lambda_i(x, a) + s$.

I Exemples

- 4) C'est un polynôme homogène de degré m vu la formule développée du déterminant. Il est hyperbolique dans la direction de I (matrice identité) d'après le théorème spectral.
- 5) $q(ta x) = t^2q(a) 2tf(a, x) + q(x)$ où f est la forme bilinéaire symétrique polaire de q. On a des racines réelles si et seulement si le discriminant est positif ou nul, soit $f^2(a, x) \ge q(a)q(x)$.

Soit a tel que q(a) > 0 et $H = \{x \text{ tq } f(a,x) = 0\}$. C'est un hyperplan supplémentaire de $\langle a \rangle$ (l'espace vectoriel engendré par a) et on veut entre autres $q(a)q(x) \leqslant 0$ pour tout $x \in H$. En notant (e_1,\ldots,e_n) la base canonique de \mathbb{R}^n , il est nécessaire que $H \cap \langle e_1,\ldots,e_k \rangle = \{0\}$. Ces deux espaces sont alors en somme directe ce qui implique par calcul de dimension : $k \leqslant 1$ donc k = 1. Réciproquement, avec k = 1, $q(te_1 - x) = (t - x_1)^2 - (x_2^2 + \ldots + x_n^2)$ admet bien deux racines réelles donc q est hyperbolique dans la direction de e_1 .

Pour a tel que q(a) < 0, on trouve de même que si q est hyperbolique dans la direction de a alors k+1=n (donc $n \ge 2$), et lorsque cette condition est satisfaite, q est hyperbolique dans la direction de e_n .

En conclusion, q est hyperbolique dans une direction convenable si et seulement si k = 1 ou k = n - 1.

6) $q(x) = \sum_{j=1}^{n} a_j \frac{\partial p}{\partial x_j}(x)$ est bien un polynôme en x homogène de degré d-1, non nul en a (cf. P-1)), et on a par différentiation composée : $q(ta-x) = \frac{d}{dt}(p(ta-x))$. Notons $t_1 < \ldots < t_k$ les racines sans répétition de $t \mapsto p(ta-x)$, de multiplicités m_1, \ldots, m_k . Avec le théorème de Rolle, $t \mapsto q(ta-x)$ admet une racine dans chaque intervalle $[t_i, t_{i+1}]$, et de plus t_i est aussi racine de ce polynôme avec la multiplicité

- $m_i 1$ lorsque $m_i \ge 2$. On a ainsi trouvé $(k-1) + (m_1 1) + \ldots + (m_k 1) = m_1 + \ldots + m_k 1 = d-1$ racines pour $t \mapsto q(t\alpha x)$, ce qui prouve l'hyperbolicité.
- 7) Itération de 6) à partir du polynôme $q(x) = x_1 \dots x_n$, manifestement hyperbolique dans la direction de e.

II Continuité des racines

- 8) Si $F(x) \xrightarrow[x \to \bar{x}]{} F(\bar{x})$ on peut trouver $\varepsilon > 0$ et une suite (x^m) convergeant vers \bar{x} telle que $||F(x^m) F(\bar{x})|| \ge \varepsilon$ pour tout m. C'est en contradiction avec l'hypothèse de l'énoncé.
- 9) a) $p(ta x) = t^d p(a) + polynôme(t, x) = t^d p(a)(1 + polynôme(1/t, x))$.

x variant dans un ensemble borné, il existe M tel que pour tout x et pour tout t avec $|t| \ge 1$, on a

$$|p(ta-x)| \geqslant |t|^{d}|p(a)|(1-M/|t|).$$

En particulier, pour $|t| \ge 1$ et |t| > M, t n'est pas racine. Ainsi, pour tout x (dans un ensemble borné) et pour tout j, on a $|\lambda_j(x,a)| \le \max(1,M)$.

b) On suppose $x^m \to x$ et on extrait une sous-suite $(x^{\phi(k)})$ telle que pour tout j, la suite $\lambda_j(x^{\phi(k)}, a)$ est convergente, de limite μ_j . Les limites croissent avec j comme le font les $\lambda_j(x^{\phi(k)}, a)$ à k fixé. Pour $t \in \mathbb{R}$ fixé on a $p(ta - x^{\phi(k)}) = p(a) \prod_j (t - \lambda_j(x^{\phi(k)}, a)) \underset{k \to \infty}{\longrightarrow} p(a) \prod_j (t - \mu_j)$. p est continue car polynomiale, donc cette limite est égale à p(ta - x), ce qui prouve que $\mu_j = \lambda_j(x, a)$ pour tout j. On peut alors conclure à la continuité de Λ avec 8).

III Le cône du futur

- 10) $\lambda_1((1-t)a+tx,a) = 1-t+\lambda_1(tx,a) = 1-t+t\lambda_1(x,a) > 0$ pour $t \in [0,1]$ et $x \in C(p,a)$. Ceci prouve le caractère étoilé par rapport à a. On a vu en I-6) que les racines de $t \mapsto a \cdot \nabla p(ta-x)$ sont comprises entre les deux racines extrêmes de $t \mapsto p(ta-x)$, en particulier elles sont toutes strictement positives si $\lambda_1(x,a) > 0$, d'où l'inclusion $C(a \cdot \nabla p,a) \supset C(p,a)$.
- 11) Pour t > 0, $\lambda_j(tb + x, a) = t\lambda_j(b + x/t, a) = t\lambda_j(b, a) + \underset{t \to +\infty}{o}(t)$ par continuité de $\lambda_j(., a)$ en b. Donc $\phi_j(t) \underset{t \to +\infty}{\longrightarrow} +\infty$. On montre de même que $\phi_j(t) \underset{t \to -\infty}{\longrightarrow} -\infty$. Par continuité, l'image de ϕ_j est un intervalle ; c'est $]-\infty, +\infty[$.
 - $\varphi_j(t) = \varphi_k(t)$ avec $j \neq k$ implique que tb + x soit colinéaire à α , soit $x \in \langle \alpha, b \rangle$. Réciproquement, si $x = \alpha\alpha + \beta b$ alors $\varphi_j(-\beta) = \lambda_j(\alpha\alpha, \alpha) = \alpha$, indépendant de j.
- 12) Avec P-3), on a $p(b) = p(a) \prod_{j=1}^d \lambda_j(b,a)$ donc $p(b) \neq 0$. Ensuite, $p(tb+x) = p(a) \prod_{j=1}^d \phi_j(t)$ s'annule à chaque fois qu'une des fonctions ϕ_i s'annule.

Si $x \notin \langle a, b \rangle$, les ϕ_j ont chacune au moins une racine et n'ont pas de racine en commun, donc le polynôme $t \mapsto p(tb+x)$ admet au moins d racines réelles distinctes.

Si $x = \alpha \alpha + \beta b$, on a $\lambda_j(tb + x, \alpha) = \lambda_j((t + \beta)b + \alpha \alpha, \alpha) = (t + \beta)\lambda_k(b, \alpha) + \alpha$ avec k = j si $t \geqslant \beta$ et k = d + 1 - j si $t < -\beta$. Les racines de $t \mapsto p(tb + x)$ sont donc les réels $-\beta - \alpha/\lambda_k(b, \alpha)$, $k \in [1, d]$ (elles sont toutes du même côté de $-\beta$, côté fonction du signe de α). Elles sont distinctes lorsque $\alpha \neq 0$ et $b \notin \langle \alpha \rangle$ par stricte hyperbolicité de p dans la direction α .

Il reste à étudier les cas $x = \beta b$ et $x = \alpha a + \beta b$ avec $b \in \langle a \rangle$. Dans ces deux cas, x est colinéaire à b et $t \mapsto p(tb+x)$ admet d racines confondues.

En changeant x en -x, on a ainsi prouvé la stricte hyperbolicité de p dans la direction b.

13) Pour $x \notin \langle a, b \rangle$, chaque ϕ_j s'annule exactement une fois (sinon on a trop de racines pour $t \mapsto p(tb+x)$). Comme $\lambda_j(tb+x-sa,a)=\phi_j(t)-s$ et $tb+x-sa\notin \langle a,b \rangle$, chaque ϕ_j prend exactement une fois la valeur s, et ce pour tout $s\in \mathbb{R}$. Ainsi les ϕ_j sont des bijections de \mathbb{R} sur \mathbb{R} . Étant continues, elles sont strictement monotones et vu les limites en $\pm \infty$ elles sont strictement croissantes.

Pour $x = \alpha a + \beta b$, on a vu que ϕ_j est une fonction continue affine par morceaux de coefficients directeurs strictement positifs; elle est strictement croissante.

14) Supposons dans un premier temps que $\lambda_1(y,a)=0$: pour $\alpha>0$ on a $b=y+\alpha a\in C(p,a)$, donc $t\mapsto \lambda_1(tb+x,a)$ est strictement croissante comme on l'a vu à la question précédente. Lorsque $\alpha\to 0^+$, on a $\lambda_1(tb+x,a) \to \lambda_1(ty+x,a)$ par continuité de λ_1 et donc $t \mapsto \lambda_1(ty+x,a)$ est croissante au sens large en tant que limite simple de fonctions qui le sont.

Dans le cas général $(\lambda_1(y, a))$ quelconque), on peut remplacer y par $y - \lambda_1(y, a)a$ sans changer la quantité

$$f(t) = \lambda_1(ty + x, a) - t\lambda_1(y, a)$$

et on est ramené au cas particulier précédent.

Considérons à présent $x, y \in V$ et $t \in [0, 1]$ on a :

$$\begin{split} \lambda_1((1-t)x+ty,\alpha) &= (1-t)\lambda_1(x+ty/(1-t),\alpha) \\ &= (1-t)f(t/(1-t))+t\lambda_1(y,\alpha) \\ &\geqslant (1-t)f(0)+t\lambda_1(y,\alpha) \\ &\geqslant (1-t)\lambda_1(x,\alpha)+t\lambda_1(y,\alpha). \end{split}$$

La concavité de $x \mapsto \lambda_1(x, a)$ et la convexité de C(p, a) s'ensuivent.

15) $\lambda_1(x,b)$ est un réel t tel qu'il existe $j \in [1,d]$ pour lequel $\lambda_j(tb-x,a)=0$. Si l'on suppose $t \leq 0$ alors

$$\begin{split} 0 &= \lambda_{j} (tb - x, \alpha) \\ &= (t - 1) \lambda_{d + 1 - j} \Big(\frac{-t}{1 - t} b + \frac{1}{1 - t} x, \alpha \Big) \\ &\leqslant (t - 1) \Big(\frac{-t}{1 - t} \lambda_{d + 1 - j} (b, \alpha) + \frac{1}{1 - t} \lambda_{d + 1 - j} (x, \alpha) \Big) \\ &\leqslant t \lambda_{d + 1 - j} (b, \alpha) - \lambda_{d + 1 - j} (x, \alpha) \\ &< 0, \end{split}$$

ce qui est absurde.

16) On vient de voir que $b \in C(p, a) \Rightarrow C(p, a) \subset C(p, b)$. $\text{Comme } \alpha \in C(\mathfrak{p}, \alpha) \text{, on a aussi } b \in C(\mathfrak{p}, \alpha) \Rightarrow \alpha \in C(\mathfrak{p}, b) \Rightarrow C(\mathfrak{p}, b) \subset C(\mathfrak{p}, \alpha).$

IV Le cas général

17) a) On écrit $R(x,y) = \sum_{i,j} \lambda_{ij} x^i y^j$ et $Q_0(t) = \sum_i \mu_i t^i$. Alors $x^m Q_0(y^\alpha/x^\beta) = \sum_i \mu_i x^{m-i\beta} y^{i\alpha}$ et l'on a $\alpha(m-i\beta) + \beta(i\alpha) = \alpha m$. Il s'agit donc de séparer les termes $\lambda_{ij} x^i y^j$ de R(x,y) selon que $\alpha i + \beta j = m$ ou $\alpha i + \beta j > m$. α, β sont à déterminer de sorte qu'il n'y ait pas de termes tels que $\alpha i + \beta j < m$ ayant un coefficient non nul. De plus, R_0 doit contenir au moins un terme $\lambda_{ij}x^iy^j$ tel que $\lambda_{ij} \neq 0$ et j > 0 (condition $deg(Q_0) > 0$).

Notons E l'ensemble des points (i,j) du plan pour lesquels $\lambda_{ij} \neq 0$. C'est un ensemble fini, contenant au moins les deux points (m,0) et (0,r) et ne contenant aucun point (i,0) avec i < m. Considérons alors une droite variable D de pente strictement négative et passant par (m, 0) : il existe une et une seule position de D pour laquelle tous les points de E sont au dessus de D et au moins un point autre que (m, 0) est sur D : le point (i, j) en question est tel que la pente p = (i - m)/(j - 0) est maximale parmi celles qui sont strictement négatives. On écrit le rationnel p sous forme irréductible $p = -\alpha/\beta$ avec α , $\beta > 0$ premiers entre eux, donc D a pour équation cartésienne $\alpha x + \beta y = \text{cste}$ et la constante vaut αm puisque $(m,0) \in D$. D étant ainsi choisie, la décomposition de R(x,y) s'ensuit et satisfait clairement aux conditions posées. Par ailleurs $Q_0(0) = \lambda_{m,0} \neq 0$.

 $\mathbf{b}) \ R(z \mathbf{u}^{\alpha}, \mathbf{u}^{\beta}) = \mathbf{u}^{m\alpha} z^m Q_0(1/z^{\beta}) + R_1(z \mathbf{u}^{\alpha}, \mathbf{u}^{\beta}).$ On pose $\widehat{R}(z) = z^m Q_0(1/z^\beta)$ et $S(z, u) = R_1(zu^\alpha, u^\beta)/u^{\alpha m+1} = \sum_{\alpha i + \beta j > \alpha m} \lambda_{ij} z^i u^{\alpha i + \beta j - \alpha m-1}$. R est bien un polynôme vu la contrainte sur $deg(Q_0)$ et il est ni constant ni réduit à un seul monôme, donc il admet une racine complexe non nulle.

- c) On applique le lemme de Rouché à u fixé avec $P = \widehat{R}$, Q(z) = uS(z,u) et $\varepsilon \leqslant |\Im \omega|$ choisi de sorte que $\widehat{R}(z) \neq 0$ si $|z \omega| = \varepsilon$. Un tel choix est possible puisque \widehat{R} a un nombre fini de racines. Par continuité et compacité, il existe M, N > 0 tels que $|Q(z)| \leqslant M|u|$ et $|P(z)| \geqslant N$ pour tout z tel que $|z \omega| = \varepsilon$ et tout u tel que $|u| \leqslant 1$. Ainsi, pour $|u| < \min(1, N/M)$, on a bien sup $|Q| < \inf|P|$.
- 18) a) Sinon on peut appliquer 17c) avec u réel non nul et $x = zu^{\alpha} \notin \mathbb{R}$.
 - b) On pose $z'=ze^{2i\alpha\pi/\beta}$ et $u'=ue^{-2i\pi/\beta}$. Alors $zu^{\alpha}=z'u'^{\alpha}=x$ et $u^{\beta}=u'^{\beta}=y$ donc on a les décompositions :

$$R(x,y) = u^{\alpha m} \widehat{R}(z) + u^{\alpha m+1} S(z,u)$$

$$= u'^{\alpha m} \widehat{R}(z') + u'^{\alpha m+1} S(z',u')$$

$$= u^{\alpha m} e^{-2i\alpha m\pi/\beta} \widehat{R}(z') + u'^{\alpha m+1} S(z',u').$$

En simplifiant par $\mathfrak{u}^{\alpha m}$ et en prenant $\mathfrak{u}=0=\mathfrak{u}'$, il vient : $\widehat{R}(z)=e^{-2\mathrm{i}\alpha m\pi/\beta}\widehat{R}(z')$, ce qui prouve que l'ensemble des racines de \widehat{R} est invariant par la transformation $z\mapsto z'$. Il s'agit d'un ensemble de réels non tous nuls ; ceci impose $e^{2\mathrm{i}\alpha\pi/\beta}\in\mathbb{R}$, soit $\beta\mid 2\alpha$ et comme $\alpha\wedge\beta=1$, β est un diviseur de 2.

- c) Même méthode avec la transformation $z'=ze^{i\alpha\pi/\beta}$ et $u'=ue^{-i\pi/\beta}$ soit $(zu^{\alpha},u^{\beta})=(z'u'^{\alpha},-u'^{\beta})$. On obtient alors que l'ensemble des racines de \widehat{R} est stable par multiplication par $e^{i\alpha\pi/\beta}$, puis que $\beta \mid \alpha$, d'où $\beta \mid 1$.
- d) En reprenant les notations de 17a), on a $(0,r) \in E$ donc $\alpha 0 + \beta r \geqslant \alpha m$, soit $r \geqslant \alpha m \geqslant m$.
- 19) a) $p(sa tb x) = p(\underbrace{(s s^*)}_X a + \underbrace{(t^* t)}_Y b + (s^*a t^*b x)) = R(X, Y).$ On a $R(0,0) = p(s^*a t^*b x) = 0$ et à Y fixé (soit à t fixé), les racines de $X \mapsto R(X,Y)$ sont toutes

On a $R(0,0) = p(s^*a - t^*b - x) = 0$ et à Y fixé (soit à t fixé), les racines de $X \mapsto R(X,Y)$ sont toutes réelles. Donc la multiplicité de X = 0 comme racine de R(X,0) est majorée par celle de Y = 0 comme racine de R(0,Y). La première multiplicité est le nombre de j tels que $\lambda_j(t^*b + x) = s^*$, d'après la factorisation $p(sa - tb - x) = p(a) \prod_i (s - \lambda_j(t^*b + x))$; la deuxième est r par définition.

b) On a toujours ϕ_j surjective (la démonstration vue en III-11) n'utilisait pas l'hypothèse de stricte hyperbolicité). De plus, d'après la question précédente, la somme des multiplicités des racines réelles de $t\mapsto p(tb-x)$ est supérieure ou égale au nombre total de racines pour l'ensemble des ϕ_j , donc supérieure ou égale au nombre de ϕ_j , soit d. Ainsi $t\mapsto p(tb-x)$ est scindé sur \mathbb{R} .

V L'inégalité de Gårding sur le cône C(p, a)

- $20) \ a) \ p(tb-x) = M(tb-x,\ldots,tb-x) = t^d p(b) dt^{d-1} M(x,b,\ldots,b) + (\text{termes de degr\'e} \leqslant d-2). \ \text{La somme des racines de ce polynôme en } t \text{ est } \sum_{j=1}^d \lambda_j(x,b) = dM(x,b,\ldots,b)/p(b).$
 - b) $M(a,b,\ldots,b)/p(b)=(1/d)\sum_j\lambda_j(a,b)\geqslant (\prod_j\lambda_j(a,b))^{1/d}=(p(a)/p(b))^{1/d}$. On obtient l'inégalité demandée en supposant p(b)>0, ou ce qui est équivalent, p(a)>0. Il y a ici une erreur d'énoncé.
- 21) C'est une conséquence de I-6) car $a \cdot \nabla p(x) = dM(a, x, ..., x)$.
- 22) Pour d = 1 il y a égalité.

Si l'inégalité est vraie au degré d-1, on l'applique au polynôme $q(x)=M(x^1,x,\ldots,x)$ en supposant $p(\alpha)>0$:

- $x^1 \in C(p, a)$ donc $q(x^1) = p(x^1) = p(a) \prod_j \lambda_j(x^1, a) > 0$;
- $x^2, \ldots, x^d \in C(p, a) = C(p, x^1) \subset C(q, x^1)$.

Il vient:

$$\begin{split} M(x^1, x^2, \dots, x^d) &\geqslant \prod_{j=2}^d M(x^1, x^j, \dots, x^j)^{1/(d-1)} \\ &\geqslant \prod_{j=2}^d (p(x^1)^{1/d} p(x^j)^{(d-1)/d})^{1/(d-1)} \\ &\geqslant p(x^1)^{1/d} \prod_{j=2}^d p(x^j)^{1/d}. \end{split}$$

x-ens.tex - page 9

23) a) On a avec l'inégalité de Cauchy-Schwarz : $\alpha\beta - B(u, v) \geqslant \alpha\beta - \sqrt{q(u)}\sqrt{q(v)}$. Il reste donc à prouver que pour $\alpha, \beta, \gamma, \delta$ réels positifs avec $\alpha > \gamma$ et $\beta > \delta$, on a $\alpha\beta - \gamma\delta \geqslant \sqrt{(\alpha^2 - \gamma^2)(\beta^2 - \delta^2)}$.

Une élévation au carré résout trivialement la question, mais le correcteur tient certainement à que l'on applique plutôt l'inégalité de la question précédente.

On considère donc la forme bilinéaire symétrique sur \mathbb{R}^2 définie par $M(x,y)=x_1y_1-x_2y_2$. La forme quadratique associée est définie par $p(x)=x_1^2-x_2^2$, polynôme hyperbolique dans la direction de $e_1=(1,0)$.

 $C(p,e_1) = \{x \in \mathbb{R}^2 \text{ tq } t \mapsto (t-x_1)^2 - x_2^2 \text{ a ses racines strictement positives }\} = \{x \in \mathbb{R}^2 \text{ tq } x_1 > |x_2|\},\$ donc les vecteurs (α,γ) et (β,δ) appartiennent à $C(p,e_1)$ et $p(e_1) > 0$, et

$$\alpha\beta - \gamma\delta = M((\alpha, \gamma), (\beta, \delta)) \geqslant \sqrt{p((\alpha, \gamma))p((\beta, \delta))} = \sqrt{(\alpha^2 - \gamma^2)(\beta^2 - \delta^2)}.$$

b) Ici aussi, on obtient trivialement cette inégalité en appliquant l'inégalité arithmético-géométrique à la quantité per(A)/d!, et on va présenter une solution plus compliquée mais plus dans l'esprit du sujet.

Posons pour $x^1,\ldots,x^d\in\mathbb{R}^d:M(x^1,\ldots,x^d)=\text{per}([x^1,\ldots,x^d])$ où $[x^1,\ldots,x^d]$ désigne la matrice $d\times d$ ayant x^1,\ldots,x^d pour lignes. On a bien une forme d-linéaire symétrique, et le polynôme associé à M est défini par $p(x)=d!\,x_1\ldots x_d$. Il est hyperbolique dans la direction $e=(1,\ldots,1)$ avec p(e)>0, et C(p,e) est l'ensemble des vecteurs à coordonnées strictement positives. Ainsi, lorsque toutes les coordonnées des vecteurs x^1,\ldots,x^d sont strictement positives, on a

$$\text{per}([x^1,\dots,x^d])\geqslant \prod_{j=1}^d \Big(d!\prod_{i=1}^d x_i^j\Big)^{1/d}=d! \, \Big(\prod_{1\leqslant i,j\leqslant d} x_i^j\Big)^{1/d}.$$

Si les vecteurs sont à coordonnées positives ou nulles mais non toutes strictement positives, le produit de droite est nul et l'inégalité est encore vraie.

VI Concavité de $p^{1/d}$ sur le cône C(p, a)

24) On suppose toujours p(a) > 0. On a:

$$p(x+y) = M(x+y,...,x+y)$$

$$= \sum_{k=0}^{d} {d \choose k} M(\underbrace{x,...,x}_{k},\underbrace{y,...,y}_{d-k})$$

$$\geq \sum_{k=0}^{d} {d \choose k} p(x)^{k/d} p(y)^{(d-k)/d}$$

$$\geq (p(x)^{1/d} + p(y)^{1/d})^{d}.$$

Ensuite, pour $x, y \in C(p, a)$ et $t \in [0, 1]$:

$$p((1-t)x + ty) \ge (p((1-t)x)^{1/d} + p(ty)^{1/d})^d = ((1-t)p(x)^{1/d} + tp(y)^{1/d})^d,$$

ce qui prouve la concavité de $p^{1/d}$.

25) On prend $p = \det \alpha = I$. $C(p, \alpha)$ est l'ensemble des matrices symétriques à valeurs propres strictement positives ; c'est l'ensemble des matrices symétriques définies positives.

VII Inégalités de Weyl

- 26) Si k < 2 alors i + j < 3 donc i = j = k = 1 et on contredit la croissance de $t \mapsto \lambda_1(ty + x) t\lambda_1(y)$ vue en III-14).
- 27) Si y est colinéaire à α : $y = \alpha \alpha$ alors $\lambda_k(x+y) = \lambda_k(x) + \alpha$ et $\lambda_i(x) + \lambda_j(y) = \lambda_i(x) + \alpha$. Comme $k \geqslant i$, on a aussi $\lambda_k(x) \geqslant \lambda_i(x)$, soit $\lambda_k(x+y) \geqslant \lambda_i(x) + \lambda_j(y)$. Ce cas est donc impossible dans la situation envisagée. Ainsi, par stricte hyperbolicité, les nombres $\lambda_r(y)$ sont distincts. On choisit α strictement compris entre $\lambda_{j-1}(y)$ et $\lambda_j(y)$ (ou $\alpha < \lambda_1(y)$ si j=1) et on pose u=x, $v=y-\alpha\alpha$. Avec ce choix, $\lambda_r(v) = \lambda_r(y) \alpha$ a le signe voulu en fonction de r. De plus,

$$\lambda_k(u+\nu) - \lambda_i(u) = \lambda_k(x+y) - \lambda_i(x) - \alpha = \underbrace{\left(\lambda_k(x+y) - \lambda_i(x) - \lambda_j(y)\right)}_{<0} \quad + \underbrace{\left(\lambda_j(y) - \alpha\right)}_{>0, \text{ arbitrairement petit}}.$$

On règle α pour que cette dernière somme soit strictement négative.

28) On a vu en III-11) : $\lambda_r(u+t\nu) = t\lambda_r(\nu) + \underset{t\to +\infty}{\text{o}}(t)$ et $\lambda_r(u+t\nu) = t\lambda_{d+1-r}(\nu) + \underset{t\to -\infty}{\text{o}}(t)$. Donc ϕ_r a des limites infinies en $\pm \infty$ dont les signes dépendent des positions de r par rapport à j et à d+1-j. De plus, $\phi_r(0) = \lambda_r(u)$ et $\phi_r(1) = \lambda_r(u+\nu)$ donc on peut comparer $\phi_r(0)$ et $\phi_r(1)$ à λ^* en fonction des positions de r par rapport à i et à k. Il y a ainsi seize cas à considérer :

				$-\infty$	0	1	$+\infty$	
$r \leqslant d + 1 - j$	r < i	$r \leqslant k$	r < j	$-\infty$		_	$-\infty$	N ≥ 0
			$r \geqslant j$	$-\infty$		_	$+\infty$	N ≥ 1
		r > k	r < j	$-\infty$			$-\infty$	N ≥ 0
			$r \geqslant j$	$-\infty$			$+\infty$	N ≥ 1
	r≥i	$r \leqslant k$	r < j	$-\infty$	+	_	$-\infty$	N ≥ 2
			$r \geqslant j$	$-\infty$	+	_	$+\infty$	N ≥ 3
		r > k	r < j	$-\infty$	+		$-\infty$	N ≥ 2
			$r \geqslant j$	$-\infty$	+		$+\infty$	N ≥ 1
r > d + 1 - j	r < i	$r \leqslant k$	r < j	$+\infty$		_	$-\infty$	N ≥ 1
			$r \geqslant j$	$+\infty$		_	$+\infty$	N ≥ 2
		r > k	r < j	$+\infty$			$-\infty$	N ≥ 1
			$r \geqslant j$	$+\infty$			$+\infty$	N ≥ 0
	r≥i	$r \leqslant k$	r < j	$+\infty$	+	_	$-\infty$	N ≥ 1
			r≥j	$+\infty$	+	_	$+\infty$	N ≥ 2
		r > k	r < j	$+\infty$	+		$-\infty$	N ≥ 1
			r≥j	+∞	+		$+\infty$	N ≥ 0

Dans les colonnes 0 et 1, on a noté + pour $\phi_r(t) > \lambda^*$, - pour $\phi_r(t) < \lambda^*$ et rien si l'on ne connaît pas la position de $\phi_r(t)$ par rapport à λ^* . La dernière colonne donne le minorant demandé.

29) a) Le nombre de racines est minoré par le nombre de couples (r,t) tels que $\phi_r(t) = \lambda^*$ d'après IV-19a). On doit donc calculer card $\{r \ tq \ N \geqslant 1\} + 2 \operatorname{card}\{r \ tq \ N \geqslant 2\} + 3 \operatorname{card}\{r \ tq \ N \geqslant 3\}$. En écrivant les seize cas du tableau précédent sous forme d'intersections d'intervalles et en regroupant les intersections ayant des facteurs en commun, il vient :

$$\begin{split} \text{nb. racines} &\geqslant & \operatorname{card}([\![1,d+1-j]\!] \cap [\![1,i-1]\!] \cap [\![j,d]\!]) \\ &+ & \operatorname{card}([\![1,d+1-j]\!] \cap [\![i,d]\!] \cap [\![k+1,d]\!] \cap [\![j,d]\!]) \\ &+ & \operatorname{card}([\![d+2-j,d]\!] \cap [\![1,j-1]\!]) \\ &+ & 2\operatorname{card}([\![1,d+1-j]\!] \cap [\![i,d]\!] \cap [\![1,j-1]\!]) \\ &+ & 2\operatorname{card}([\![d+2-j,d]\!] \cap [\![1,k]\!] \cap [\![j,d]\!]) \\ &+ & 3\operatorname{card}([\![1,d+1-j]\!] \cap [\![i,d]\!] \cap [\![1,k]\!] \cap [\![j,d]\!]). \end{split}$$

On divise le 3 en 1+2 et on regroupe... cela donne le minorant de l'énoncé.

b) On a $k = i + j - 1 \le d$ donc $j \le i \le d + 1 - j$. Ainsi le deuxième cardinal de la formule précédente est nul. Le troisième l'est aussi car $j \le i$. Le quatrième se simplifie car $[j, d] \supset [d + 2 - j, d]$.

- 30) On utilise $\operatorname{card}(\llbracket a,b \rrbracket = b-a+1 \text{ pour } a \leqslant b \text{ et on distingue les cas } k \leqslant d+1-j, \ k \geqslant d+2-j.$
- 31) Le nombre de racines ne peut dépasser d. La situation envisagée est donc impossible, d'où

$$\lambda_{\ell}(x+y) \geqslant \lambda_{k}(x+y) \geqslant \lambda_{i}(x) + \lambda_{j}(y)$$

en supposant $j \le i$. Lorsque j > i, on peut permuter x et y.

32) Je ne sais pas.