ENS 2013 MP, D

Bernard Randé

Partie I

Lorsque a n'est pas ambigu, on note $\lambda_i(x)$ plutôt que $\lambda_i(x,a)$.

1. On a $P(tv) = t^d P(v)$. Par dérivation par rapport à t,

$$\sum_{i=1}^{n} v_i \frac{\partial P}{\partial v_i}(tv) = dt^{d-1} P(v).$$

En évaluant en t=1,

$$\sum_{i=1}^{n} v_i \frac{\partial P}{\partial v_i}(v) = dP(v).$$

2. Pour $p = x_1^{m_1} \dots x_n^{m_n}$,

$$p(ta - x) = t^d a_1^{m_1} \dots a_n^{m_n} + q(t)$$
, avec deg $q \le d - 1$.

Par combinaison linéaire, pour p homogène de degré d,

$$p(ta - x) = p(a)t^d + r(t)$$
, avec deg $r \le d - 1$.

Comme $p(a) \neq 0$, $\deg_t p(ta - x) = d$. Comme ce polynôme est scindé dans \mathbb{R} , il admet d racines réelles, comptées avec multiplicité.

3. • D'après **2**,

$$p(ta - x) = p(a) \prod_{i=1}^{d} (t - \lambda_i(x)).$$

Faisant t = 0 et divisant par $(-1)^d$,

$$p(x) = p(a) \prod_{i=1}^{d} \lambda_i(x).$$

• On a, si $s \neq 0$,

$$p(ta - sx) = p(a) \prod_{i=1}^{d} (t - \lambda_i(sx)) = s^d p(a) \prod_{i=1}^{d} (\frac{t}{s} - \lambda_i(x)) = p(a) \prod_{i=1}^{d} (t - s\lambda_i(x)).$$

Si s > 0, $\lambda_i(sx) = s\lambda_i(x)$ tandis que si s < 0, $\lambda_i(sx) = s\lambda_{d+1-s}(x)$. Si s = 0, tous les λ_i sont nuls.

• On a
$$p(ta - x - sa) = p(a) \prod_{i=1}^{d} (t - s - \lambda_i(x))$$
. Donc $\lambda_i(x + sa) = s + \lambda_i(x)$.

- **4.** Cette fonction p est homogène de degré m sur $S_m(\mathbb{R})$. Comme $p(tI_m x)$ est scindé dans \mathbb{R} d'après le théorème spectral et que $p(I_m) = 1$, p est hyperbolique dans la direction I_m .
- **5.** Pour k = n, la forme q est strictement positive et ne peut donc s'annuler en dehors de 0. Elle n'est donc pas hyperbolique. Supposons plutôt $k \in [1, n-1]$.
- Supposons q hyperbolique dans la direction a, avec d'abord q(a) > 0. Alors, pour tout x,

$$q(ta - x) = q(a)t^2 - 2tB(a, x) + q(x)$$

est scindé dans \mathbb{R} , donc $B(a,x)^2\geqslant q(a)q(x)$. Considérons l'ensemble V des x tels que B(a,x)=0. Comme B(a,a)>0, c'est un hyperplan. Si $x\in V,\ q(x)\leqslant 0$. Supposons par l'absurde $k\geqslant 2$. Soit $W=\mathrm{vect}(e_1,e_2)$. Il existe $x\in V\cap W-\{0\}$. Or q(x)>0 car $x\in W$, ce qui est une contradiction. Donc k=1.

En étudiant le cas q(a) < 0, par changement de q en -q, on voit qu'il est nécessaire que $k \in \{1, n-1\}$.

• Supposons réciproquement que k=1 par exemple. Alors

$$q(te_1 - x) = (t - x_1)^2 - x^2 - \dots - x_n^2$$

C'est un polynôme scindé dans \mathbb{R} . Donc q est hyperbolique dans la direction e_1 . Et de même si k = n - 1 (en remplaçant e_1 par e_n).

6. On a

$$\frac{d}{dt}p(ta-x) = (a\nabla p)(ta-x).$$

D'après le théorème de Rolle, ce polynôme est scindé dans \mathbb{R} . On a $(a\nabla p)(a)=dp(a)\neq 0$. Enfin, $a\nabla p$ est manifestement homogène de degré d-1.

7. • On sait que

$$\prod_{i=1}^{n} (t - x_i) = \sum_{k=0}^{n} (-1)^k t^{n-k} \Sigma_k(x).$$

Dérivons cette égalité par rapport à x_j :

$$-\prod_{i\neq j}^{n}(t-x_i) = \sum_{k=0}^{n}(-1)^k t^{n-k} \frac{\partial \Sigma_k}{\partial x_j}(x).$$

Multiplions par $t - x_i$:

$$-\prod_{i=1}^{n} (t - x_i) = \sum_{k=0}^{n} (-1)^k t^{n-k+1} \frac{\partial \Sigma_k}{\partial x_j}(x) - x_j \sum_{k=0}^{n} (-1)^k t^{n-k} \frac{\partial \Sigma_k}{\partial x_j}(x)$$
$$= \sum_{k=-1}^{n-1} (-1)^{k+1} t^{n-k} \frac{\partial \Sigma_{k+1}}{\partial x_j}(x) - x_j \sum_{k=0}^{n} (-1)^k t^{n-k} \frac{\partial \Sigma_k}{\partial x_j}(x).$$

En identifiant le terme en t^{n-k} et en divisant par $(-1)^{k+1}$

$$\Sigma_k(x) = \frac{\partial \Sigma_{k+1}}{\partial x_j}(x) + x_j \frac{\partial \Sigma_k}{\partial x_j}(x).$$

Sommons pour j entre 1 et n:

$$n\Sigma_k(x) = (e \cdot \nabla \Sigma_{k+1})(x) + k\Sigma(x)$$

grâce à 1 et au fait que Σ_k est homogène de degré k.

- Finalement, $\Sigma_k = \frac{1}{n-k}(e \cdot \nabla \Sigma_{k+1})$ pour $k \leq n-1$. Raisonnons alors par récurrence descendante. Il est évident que Σ_n est hyperbolique dans la direction e, puisque $\Sigma_n(te-x) = \prod_{i=1}^n (t-x_i)$. Si Σ_{k+1} est hyperbolique dans la direction e, alors, d'après $\mathbf{6}$, $e \cdot \nabla \Sigma_{k+1}^{i=1}$ l'est aussi, donc Σ_k de même.
- 8. Supposons F non continue en \overline{x} . Alors il existe $\varepsilon > 0$ et une suite (x^m) tendant vers \overline{x} tels que $||F(x^m) - F(\overline{x})|| \ge \varepsilon$. Si l'on applique ceci à $m = \varphi(k)$, on obtient une contradiction.
- **9.a** Soit $P = t^d + a_{d-1}t^{d-1} + \cdots + a_0$ et u une racine de P. Supposons $|u \geqslant 1$. Alors

$$u^d = -a_{d-1}u^{d-1} - \dots - a_0,$$

donc

$$|u|^d \le (|a_{d-1}| + \dots + |a_0|)|u|^{d-1}.$$

Par conséquent, $|u| \leq M(P)$ avec $M(P) := \max(1, |a_{d-1}| + \cdots + |a_0|)$.

- Soit A tel que, pour tout m, $||x^m|| \leq A$. Posons $P_m(t) := p(ta x^m) =$ $t^d + a_{d-1}(x_m)t^{d-1} + \cdots + a_0(x^m)$, où a_0, \ldots, a_{d-1} sont continues (polynomiales) sur \mathbb{R}^n , donc bornées sur B'(0,A). Il en résulte qu'il existe M' tel que, pour tout $m, M(P_m) \leq M'$ et donc, pour tout m et tout $i, |\lambda_i(x^m)| \leq M'$.
- **9.b** Soit (x^m) une suite convergeant vers \overline{x} . Pour montrer que Λ est continue en \overline{x} , il suffit d'après 8 de montrer que l'on peut trouver φ telle que $\Lambda(x^{\varphi(k)}) \to$ $\Lambda(\overline{x})$. Comme la suite $(\Lambda(x^m))$ est bornée dans \mathbb{R}^d , espace de dimension finie, il existe φ telle que $\Lambda(x^{\varphi(k)}) \to l \in \mathbb{R}^d$. Par passage à la limite dans les inégalités larges, $l_1 \leqslant \cdots \leqslant l_d$.

D'autre part, $p(ta - x^{\varphi(k)}) \to p(ta - \overline{x})$. Mais, d'un autre côté,

$$p(ta - x^{\varphi(k)}) = \prod_{i=1}^{d} (t - \lambda_i(x^{\varphi(k)})) \to \prod_{i=1}^{d} (t - l_i).$$

Par conséquent, $l_i = \lambda_i(\overline{x})$ (grâce à l'ordonnement), donc $\Lambda(x^{\varphi(k)}) \to \Lambda(\overline{x})$. Ainsi, Λ est continue en \overline{x} .

- **10.** Remarquons que $a \in C(p, a)$ car $p(ta a) = (t 1)^d p(a)$.
- Si $b \in C(p, a)$, alors, pour $t \in]0, 1[$,

$$\lambda_1((1-t)a + tb) = (1-t) + t\lambda_1(b) > 0.$$

- Si $b \in C(p, a)$, les racines de $t \mapsto (a \cdot \nabla p)(ta b)$ appartiennent à l'enveloppe convexe de celles de $t \mapsto p(ta b)$ (d'après Rolle), donc sont strictement positives.
- 11. Comme φ_j est continue, il suffit de montrer qu'elle tend vers $\varepsilon \infty$ en $\varepsilon \infty$. On a, pour u > 0,

$$\lambda_j(ub+x) = u\lambda_j(b+\frac{x}{u}) \underset{+\infty}{\sim} u\lambda_j(b)$$

par continuité de λ_j et le fait que $\lambda_j(b) > 0$. Donc $\varphi_j(u) \underset{u \to +\infty}{\to} +\infty$.

De même, pour u < 0,

$$\lambda_j(ub+x) = u\lambda_{d+1-j}(b+\frac{x}{u}) \underset{-\infty}{\sim} u\lambda_{d+1-j}(b)$$

et donc $\varphi_j(u) \underset{u \to -\infty}{\longrightarrow} -\infty$.

• Par hypothèse, si $\varphi_j(u) = \varphi_k(u)$ pour $j \neq k$, alors ub + x est colinéaire à a, donc $x \in \text{vect}(a, b)$. Si réciproquement cette condition est réalisée, $x = \alpha a - \beta b$, donc

$$p(ua - (\beta b + x)) = p((u - \alpha)a) = (u - \alpha)^d p(a),$$

donc $\lambda_j(\beta b + x) = \alpha$ pour tout j.

- **12.** Si $b \in C(p, a)$, $p(b) = p(a) \prod_{i=1}^{d} \lambda_i(b) \neq 0$. On suppose dans la suite b non colinéaire à a.
- Supposons que $x \notin \text{vect}(a,b)$. Pour chaque i, l'équation $\lambda_i(ub+x)=0$ admet une racine u_i d'après **11** et, si $j \neq i$, $u_i \neq u_j$ (sinon $\varphi_i(u_i)=\varphi_j(u_i)$), donc ces racines sont distinctes.Or

$$p(ub + x) = p(a) \prod_{i=1}^{d} \lambda_i (ub + x),$$

donc $u \mapsto p(ub+x)$ s'annule en les d réels distincts u_i .

• Supposons $x \notin \text{vect}(b)$, mais $x \in \text{vect}(a,b)$. On peut donc écrire $x = \alpha a + \beta b$, avec $\alpha \neq 0$. On a

$$p(ub+x) = p((u+\beta)b+\alpha a) = (u+\alpha)^d p(a) \prod_i (\frac{\alpha}{u+\beta} - \lambda_i(-b,a)) = p(a) \prod_i (\alpha - (u+\beta)\lambda_i(-b,a)),$$

polynôme en u scindé à racines simples.

13. • Supposons d'abord que $x \in \text{vect}(a, b)$. Alors

$$p((ub+x)-ta) = p((u+\beta)b + (\alpha-t)a)p(a)\prod_{i}((\alpha-t)-(u+\beta)\lambda_{i}(-b,a)),$$

d'après le calcul précédent. Les racines de ce polynôme en t sont les

$$\alpha - (u + \beta)\lambda_i(-b, a) = \alpha + (u + \beta)\lambda_{d+1-i}(b, a),$$

qui sont bien des fonctions strictement croissantes de u.

• Supposons à présent que $x \notin \text{vect}(a, b)$.

Considérons le polynôme p(ta-ub-x), de la variable u (pour t fixé). Il est de degré d (car $p(b) \neq 0$). Notons K_j l'ensemble des u tels que $t = \lambda_j(ub+x,a)$. Deux ensembles K_j d'indices distincts sont disjoints, d'après le deuxième alinéa de la question 11. Chaque K_j est non vide d'après la surjectivité montrée dans la question 11. Il y a d ensembles K_j et d racines (en u) de l'équation p(ta-ub-x)=0. Il y en a donc exactement une dans chaque K_j , ce qui montre l'injectivité de $u\mapsto \lambda_j(ub+x,a)$.

- L'application $u \mapsto \lambda_j(ub + x, a)$ est injective et continue sur \mathbb{R} . Elle est donc strictement monotone, et strictement croissant d'après son étude en $+\infty$.
- **14.** Il est clair que, si $x \in C(p, a)$ et t > 0, alors $tx \in C(p, a)$. Soit x et y dans C(p, a) et $t \in]0, 1[$. Puisque tx et (1 t)y sont dans C(p, a), il suffit de montrer que $x + y \in C(p, a)$.

On a $\lambda_1(x+y,a) \ge \lambda_1(y,a)$ d'après **13**, car $x \in C(p,a)$. Donc $\lambda_1(x+y,a) > 0$ car $y \in C(p,a)$.

Ainsi, C(p, a) est un cône convexe.

• Montrons que, si x et y sont dans C(p,a), $\lambda_1(x+y,a) \ge \lambda_1(x,a) + \lambda_1(y,a)$. Posons $\alpha := \lambda_1(x,a)$ et $\beta := \lambda_1(y,a)$ et soit $\varepsilon > 0$. Alors, $u := x - (\alpha - \varepsilon)a$ et $v := y - (\beta - \varepsilon)b$ sont dans C(p,a), donc u + v aussi, de sorte que

$$\lambda_1(x+y,a) - (\alpha + \beta - 2\varepsilon) > 0.$$

Faisant tendre ε vers 0.

$$\lambda_1(x+y,a) \geqslant \alpha + \beta = \lambda_1(x,a) + \lambda_1(y,a).$$

• Si $t \in]0,1[$,

$$\lambda_1((1-t)x + ty, a) \geqslant \lambda_1((1-t)x) + \lambda_1(ty) = (1-t)\lambda_1(x, a) + t\lambda_1(y, a),$$

donc $\lambda_1(\cdot, a)$ est une fonction concave.

15. Si $t \leq 0$,

$$q(tb-x) = q(a) \prod_{i} \lambda_i(tb-x, a).$$

Si $t \leq 0$, $x - tb \in C(p, a)$ d'après **14**, donc $\lambda_i(tb - x, a) < 0$. Par conséquent, q(tb - x) ne s'annule pas dans $] - \infty, 0]$, et ses racines sont strictement positives. En particulier, $\lambda_1(x, b) > 0$.

16. Soit $x \in C(p, a)$. Alors d'après ce qui précède, $x \in C(p, b)$ et donc $C(p, a) \subset C(p, b)$. En particulier, $a \in C(p, b)$ et, par symétrie, C(p, a) = C(p, b).

17.a Considérons l'ensemble A des couples (i,j) tels que $R(i,j) \neq 0$ (avec $R = \sum_{i,j} R(i,j)x^iy^j$). On a (m,0) et (0,p) dans A. Considérons les droites issues de (m,0) joignant un point de A (il y en a au moins une). Leurs pentes sont

rationnelles strictement négatives (car $(0,0) \notin A$), et en nombre fini. Soit $-\frac{\alpha}{\beta}$, avec pgcd $(\alpha,\beta)=1$ et $\beta>0$, $\alpha>0$, la plus grande, de sorte que l'équation de la droite correspondante est $\frac{y}{x-m}=-\frac{\alpha}{\beta}$, ou $\alpha x+\beta y=m\alpha$. Si $(i,j)\in A$, on a donc $\alpha i+\beta j\geqslant m\alpha$ et il existe au moins deux éléments de A tels que $\alpha i+\beta j=m\alpha$. On pose

$$R_0(x,y) := \sum_{\alpha i + \beta j = m\alpha} R(i,j) x^i y^j$$

et

$$R(x,y) := \sum_{\alpha i + \beta j \geqslant m\alpha + 1} R(i,j)x^i y^j.$$

On a

$$R_0(x,y) = x^m \sum_{\alpha i + \beta j = m\alpha}^{R} (i,j) y^j x^{i-m}.$$

Or $\beta j=(m-i)\alpha,$ donc $j=k\alpha$ et $m-i=k\beta$ pour un certain $k\in\mathbb{N}$ (car $\alpha>0$). Donc

$$R_0(x,y) = x^m \sum_k s_k y^{k\alpha} x^{-k\beta} = x^m Q_0(y^{\alpha} x^{-\beta})$$

avec

$$Q_0(t) := \sum_k s_k t^k.$$

On a vu que R_0 contient deux termes au moins, dont un terme en x^m , ce qui implique que $Q_0(0) \neq 0$. D'autre part, puis $k\beta = (m-i) \leq m$ dans la somme, définissant R_0 , on a $\beta \deg Q_0 \leq m$. Enfin, $(i,j) \mapsto k$ est manifestement injective (puisque nécessairement $j = k\alpha$) et donc le fait qu'il y ait deux termes au moins dans R_0 implique qu'il y en a au moins deux dans Q_0 , qui donc n'est pas constant.

17.b Avec les notations du a,

$$R(zu^{\alpha}, u^{\beta}) = z^{m}u^{\alpha m}Q_{0}(z^{-m}) + R_{1}(zu^{\alpha}, u\beta) = u^{\alpha m}(z^{m}Q_{0}(z^{-\beta}) + u^{-\alpha m}R_{1}(zu^{\alpha}, u\beta)).$$

Posons $\hat{R}(z) := z^m Q_0(z^{-\beta})$. Alors \hat{R} est un polynôme puisque $\beta \deg Q_0 \leqslant m$. De plus, $R_1(zu^{\alpha}, u^{\beta})$ est une combinaison linéaire de $z^i u^{\alpha i + \beta j}$ avec $\alpha i + \beta j \geqslant \alpha m + 1$, donc $u^{-\alpha m} R_1(zu^{\alpha}, u^{\beta})$ est de la forme uS(z, u). Cela donne la forme indiquée.

Puisque Q_0 admet au moins deux termes, il en va de même de \hat{R} qui, donc, n'est pas constant et admet une racine non nulle.

17.c Si $w \notin \mathbb{R}$, soit r > 0 tel que $D'(w, r) \subset \mathbb{C} - \mathbb{R}$ et en outre tel que D'(w, r) ne contienne pas d'autre racine de \hat{R} . En particulier, $\inf_{|z-w|=r} |\hat{R}(z)| =: \varepsilon > 0$. Soit $M := \sup_{(z,u) \in D'(0,r) \times D'(0,1)} |S(z,u)|$. Si $|u| \leqslant \min(\frac{\varepsilon}{2M}, 1)$, on a $|Mu| \leqslant \frac{\varepsilon}{2}$ et donc

 $|uS(z,u)| \leq \frac{\varepsilon}{2}$. Par conséquent, il existe $z \in D'(0,r)$ tel que $\hat{R}(z) + uS(z,u) = 0$. En particulier, z n'est pas réel et, de plus, $R(zu^{\alpha}, u^{\beta}) = 0$.

18.a Si \hat{R} a une racine non réelle, pour |u| assez petit, il existe z non réel tel que $R(zu^{\alpha}, u\beta) = 0$. Prenons u réel assez petit et non nul. Alors zu^{α} est réel, ce qui contredit l'hypothèse.

18.
b Soit Z l'ensemble des racines de \hat{R} et
 $z\in Z.$ Posons $\omega:=e^{\frac{2i\pi}{\beta}}.$ On a

$$R(z\omega^{\alpha}u^{\alpha}, u^{\beta}) = u^{\alpha m}(\hat{R}(z\omega^{\alpha}) + uS(z\omega^{\alpha}, u)).$$

Donc

$$\frac{R(z\omega^{\alpha}u^{\alpha},u^{\beta})}{u^{\alpha m}} = \frac{R(z(u\omega)^{\alpha},(u\omega)^{\beta})}{(u\omega)^{\alpha m}}\omega^{\alpha m}.$$

Or
$$\frac{R(zv^{\alpha},v^{\beta})}{v^{\alpha m}} \underset{v\to 0}{\longrightarrow} \hat{R}(z) = 0$$
. Donc

$$\hat{R}(z\omega^{\alpha}) = 0.$$

Ainsi, $z\omega^{\alpha} \in Z$. Si donc z est une racine non nulle de \hat{R} , réelle par hypothèse, $z\omega^{\alpha}$ étant encore réel, ω^{α} est réel. Donc $\frac{2\alpha}{\beta} = k \in \mathbb{Z}$, soit $\beta \mid 2$.

18.c On applique ce qui précède au polynôme U(x,y) := R(x,-y), qui possède les mêmes m,r,α et β . Pour y réel, U(x,y) est scindé dans $\mathbb R$. On écrit

$$U(zu^{\alpha}, u^{\beta}) = u^{\alpha m}(\hat{U}(z) + uV(z, u)).$$

Soit z une racine non nulle de \hat{U} et $\omega := e^{\frac{i\pi}{\beta}}$. On a

$$U(zu^{\alpha}, u^{\beta})u^{-\alpha m} \underset{u \to 0}{\longrightarrow} 0.$$

Donc

$$U(z(\omega u)^{\alpha}, (\omega u)^{\beta})u^{-\alpha m} \underset{u \to 0}{\longrightarrow} 0.$$

Or

$$U(z(\omega u)^{\alpha},(\omega u)^{\beta})u^{-\alpha m}=U((z\omega^{\alpha})u^{\alpha},-u^{\beta})u^{-\alpha m}=R((z\omega^{\alpha})u^{\alpha},u^{\beta})u^{-\alpha m}\to \hat{R}(z\omega^{\alpha}).$$

Donc $z\omega^{\alpha} \in \mathbb{R}$, d'où $\beta \mid \alpha$, soit $\beta = 1$.

18.d On a $(r,0) \in A$ et donc $\beta p = p \geqslant \alpha m \geqslant m$.

19.a On pose
$$\varphi(s,t):=p(sa-tb-x)=p(a)\prod_i(s-\lambda_i(tb+x,a))$$
 et $R(X,Y):=p((X+s^*)a-(Y+t^*)b-x)=\varphi(X+s^*,Y+t^*)$. Si t^* est une racine de $t\mapsto \varphi(s^*,t)$, de multiplicité $r,0$ est une racine de $R(0,Y)$, de multiplicité r . Notons que $R(0,Y)$ n'est pas le polynôme nul, puisque $p(b)\neq 0$. Soit m la multiplicité de 0 dans $R(X,0)$ (multiplicité nulle si ce n'est pas racine). Notons que $R(X,0)$ n'est pas le polynôme nul (il est de degré d). Si $y\in \mathbb{R}, x\mapsto R(x,y)$ est scindé dans \mathbb{R} par hypothèse. D'après $\mathbf{18.d}, r\geqslant m$.

Il en résulte que la multiplicité m de s^* comme racine de $s \mapsto \varphi(s, t^*)$ est inférieure ou égale à celle de t^* comme racine de $t \mapsto \varphi(s^*, t)$. Il y a donc au plus r indices i tels que $\lambda_i(t^*b + x, a) = s^*$.

19.b Il s'agit de montrer que $t\mapsto p(tb+x)$ est scindé dans $\mathbb R$. Remarquons que le résultat de la question 11 n'utilise pas la stricte hyperbolicité.

On note t_1, \ldots, t_k les racines de ce polynôme, t_q étant de multiplicité r_q . On a aussi

$$p(tb+x) = p(a) \prod_{i=1}^{d} \lambda_i(tb+x, a).$$

Pour chaque i, il existe au moins un t tel que $\lambda_i(tb+x,a)=0$ d'après la question 11, et ce t est nécessairement l'un des t_q . On en choisit et on regroupe les i correspondant au même t_q , de sorte que

$$d = \sum_{q} |\{i \; ; \; \lambda_i(t_q b + x, a) = 0\}| \leqslant \sum_{q} r_q$$

en appliquant **a** à $s^* = 0$. Donc p(tb + x) est scindé dans \mathbb{R} .

20.a On sait d'après **19** que p est hyperbolique dans la direction b, donc que

$$p(tb-x) = p(b) \prod_{i} (x - \lambda_i(x,b)) = p(b)x^d - p(b) \sum_{i} \lambda_i(x,b)x^{d-1} + \cdots$$

D'un autre côté,

$$p(tb-x) = t^{d}p(b) - dM(x, b, \dots, b)t^{d-1} + \dots$$

par d-linéarité et symétrie. Cela donne le résultat par identification.

20.b On suppose par la suite que p(a) > 0. On sait que

$$M(a,b,\ldots,b) = \frac{1}{d}p(b)\sum_{i}\lambda_{i}(a,b) \geqslant p(b)(\prod_{i}\lambda_{i}(a,b))^{\frac{1}{d}}.$$

Or $p(a) = p(b) \prod_{i} \lambda_i(a, b)$ d'après **3**. Donc

$$M(a,b) \geqslant p(b) \left(\frac{p(a)}{p(b)}\right)^{\frac{1}{d}} = p(a)^{\frac{1}{d}} p(b)^{1-\frac{1}{d}}.$$

21. On a

$$p(ta - x) = M(ta - x, \dots, ta - x)$$

et donc

$$\frac{d}{dt}p(ta-x) = M(a, ta-x, \dots, ta-x) + \dots + M(ta-x, \dots, ta-x, a) = dM(a, ta-x, \dots, ta-x).$$

D'après Rolle, $\frac{d}{dt}p(ta-x)$ est scindé dans \mathbb{R} , ce qui montre le résultat $(p(a) \neq 0)$.

22. Raisonnons par récurrence sur d. Lorsque d=1, il n'y a rien à montrer. Supposons le résultat vrai au rang d-1. Soit M symétrique homogène de degré d hyperbolique dans la direction a. On suppose toujours p(a)>0. Fixons i. D'après **21**, le polynôme p_i qui à x associe $M(x,\ldots,x,x^i,x,\ldots,x)$ est homogène de degré d-1, hyperbolique dans la direction x^i (car, d'après **19**, si $x^i \in C(p,a)$, p est hyperbolique dans la direction x^i). On a aussi $p(x^i)>0$.

Il en résulte que

$$M(x^1,\ldots,x^d) \geqslant \prod_{j\neq i} p(x_j)^{\frac{1}{d-1}}$$

et donc

$$M(x^1, \dots, x^d)^d \geqslant \prod_j (p(x_j)^{\frac{1}{d-1}})^{d-1}$$

par produit. Donc

$$M(x^1,\ldots,x^d) \geqslant \prod_j p(x_j)^{\frac{1}{d}}.$$

23.a Considérons sur $\mathbb{R}^n \times \mathbb{R}$ la forme bilinéaire symétrique définie par

$$\Phi((u,\alpha),(v,\beta)) = \alpha\beta - B(u,v),$$

et p la forme quadratique associée à Φ . On sait d'après $\mathbf{5}$ que p est hyperbolique dans la direction a=(0,1) telle que p(a)=1. La condition $\alpha^2-q(u)>0$ exprime que $p(u,\alpha)>0$. Vérifions que $x:=(u,\alpha)\in C(p,a)$. On a

$$p(ta - x) = t^2 - 2\Phi(a, x)t + p(x).$$

Le produit des racines est > 0 et leur somme, égale à $\Phi(a, x) = \alpha > 0$. Donc $x \in C(p, a)$, et de même $y := (v, \beta) \in C(p, a)$. Donc

$$\Phi(x,y)\geqslant \sqrt{p(x)p(y},$$

soit

$$\alpha\beta - B(u, v) \geqslant \sqrt{(\alpha^2 - q(u))(\beta^2 - q(u))}.$$

 ${\bf 23.b}$ On applique directement l'inégalité entre moyenne arithmétique et géométrique. On a

$$\frac{1}{d!}\operatorname{per} A\geqslant (\prod_{\rho}a_{1,\rho(1)}\cdots a_{d,\rho(d)})^{\frac{1}{d!}}.$$

On compte le nombre de fois qu'apparaît dans ce produit un terme $a_{i,j}$. C'est exactement le nombre de permutations telles que $\rho(i) = j$, soit (d-1)!. Ainsi,

$$\frac{1}{d!} \operatorname{per} A \geqslant \left(\prod_{i,j} a_{i,j}\right)^{\frac{(d-1)!}{d!}},$$

soit

$$\operatorname{per} A \geqslant d! (\prod_{i,j} a_{i,j})^{\frac{1}{d}}.$$

24. On a

$$\begin{array}{lcl} p(x+y) & = & M(x+y,\ldots,x+y) \\ & = & M(x,\ldots,x)+\cdots+\binom{d}{k}M(y,\ldots,y,x,\ldots,x,\ldots)+\cdots+M(y,\ldots,y) \end{array}$$

où le terme général contient k termes en y. On a utilisé la symétrie de M. Comme x et y sont dans C(p,a), on peut appliquer 22 au d-uplet $(y,\ldots,y,x,\ldots,x,\ldots)$:

$$p(x+y) \geqslant \sum_{k=0}^{d} {d \choose k} p(x)^{\frac{d-k}{d}} p(y)^{\frac{k}{d}} = (p(x)^{\frac{1}{d}} + p(y)^{\frac{1}{d}})^{d}.$$

Si $f(x) := p(x)^{\frac{1}{d}}$, on a donc, pour $t \in [0, 1]$

$$f((1-t)x+ty) \ge f((1-t)x) + f(ty) = (1-t)f(x) + tf(y).$$

25. L'application det est hyperbolique dans la direction I_d (sur $S_d(\mathbb{R})$). De plus, $\det(tI_d - S)$ a ses racines dans $]0, +\infty[$ si et seulement si $S \in S_d^{++}(\mathbb{R})$. Donc $C(\det I_d) = S_d^{++}(\mathbb{R})$ est un cône convexe, et d'après **24** $S \mapsto (\det S)^{\frac{1}{d}}$ est concave.

26. Si k = 1, alors i = j = 1 et

$$\lambda_1(x+y) < \lambda_1(x) + \lambda_1(y),$$

ce qui contredit 14.

27. Soit $\varepsilon > 0$ et $u := x - \varepsilon a$, $v := y - (\lambda_j(y) - \varepsilon)a$. Alors $u + v = (x + y) - \lambda_j(y)$, de sorte que

$$\lambda_k(u+v) - \lambda_i(u) = \lambda_k(x+y) - \lambda_i(y) - \lambda_i(x) + \varepsilon.$$

On choisit déjà ε tel que cette quantité soit < 0. De plus, pour r < j,

$$\lambda_r(v) = \lambda_r(y) - \lambda_i(y) + \varepsilon \leqslant \lambda_{i-1}(y) - \lambda_i(y) + \varepsilon,$$

et on choisit $\varepsilon > 0$ de façon que cette quantité soit strictement négative. En outre, pour $r \geqslant j$,

$$\lambda_r(v) = \lambda_r(y) - \lambda_j(y) + \varepsilon \geqslant \varepsilon > 0.$$

28. • On a

$$\varphi_r(0) = \lambda_r(u) \; ; \; \varphi_r(1) = \lambda_r(u+v)$$

et

$$\varphi_r(t) \underset{+\infty}{\sim} t\lambda_r(v), \ \varphi_r(t) \underset{-\infty}{\sim} t\lambda_{d+1-r}(v).$$

- Notons A_1, \ldots, A_5 les ensembles apparaissant dans cet ordre dans la question **29.a**. On note tout de suite que $A_2 = A_3 = \emptyset$. Notons N(r) le nombre de solutions de l'équation $\varphi_r(t) = \lambda^*$.
 - Soit $r \in A_1 = [j, d+1-j]$.

Premier cas : $r \in A_1 \cap [i, k] = A_5$. Alors $\varphi_r(0) \geqslant \lambda_i(u) > \lambda^*$, $\varphi_r(1) \leqslant \lambda_k(u+v) < \lambda^*$, $\varphi_r(+\infty) = +\infty$ et $\varphi_r(-\infty) = -\infty$. Donc $N(r) \geqslant 3$.

Deuxième cas : cas général. Alors $\varphi_r(0) \geqslant \lambda_j(u) \geqslant \lambda_i(u) > \lambda^*$ et $\varphi_i(r) = (-\infty)\lambda_{d+1-r}(v) = -\infty$. Donc $N(r) \geqslant 1$.

• Soit $r \in A_4$. On a $\varphi_r(1) = \lambda_r(u+v) \leqslant \lambda_k(u+v) < \lambda^*$. De plus,

$$\varphi_r(+\infty) = (+\infty)\lambda_r(v) = +\infty$$

 $\operatorname{car} r \geqslant j$, et

$$\varphi_r(-\infty) = (-\infty)\lambda_{d+1-r}(v) = +\infty$$

 $\operatorname{car} d + 1 - r < j$. Ainsi, $N(r) \ge 2$.

29.a On a obtenu la minoration dans la question 28.

29.b On a que $d+2-j \ge j$, donc $A_4 = [d+2-j,k]$. Le reste a déjà été vu.

30. • Si $d+2-j \leq k$, on a aussi $d+1-j \leq k$ et donc

$$D = d + 1 - 2j + 1 + 2(k - d - 2 + j + 1) + 2(d + 1 - j - i + 1) = d + 2.$$

• Si $d+1-j \geqslant k$, on a

$$D = d + 1 - 2j + 1 + 2(k - i + 1) = d + 2.$$

31. Les hypothèses faites au départ sont contradictoires, car un polynôme de degré d ne peut avoir d+2 racines. Donc, si i+j=k+1, pour tout (x,y), $\lambda_k(x+y) \geqslant \lambda_i(x) + \lambda_j(y)$. Si $l+1 \geqslant i+j$, on a $l \geqslant k$ et, par conséquent,

$$\lambda_l(x+y) \geqslant \lambda_i(x) + \lambda_i(y).$$

32. Cette solution est inspirée d'un article de Denis Serre, de janvier 2008, Weyl and Lidskii inequalities for general hyperbolic polynomials,

www.umpa.ens-lyon.fr/serre/DPF/WL2.pdf

Dans ce qui suit, d et a sont fixés. L'espace vectoriel Hom_d des polynômes homogènes de degré d est de dimension finie, donc toutes les normes y sont équivalentes. On prend comme norme sur Hom_d le suprémum sur la boule unité (de V^d), pour une norme quelconque sur V.

- Soit H l'ensemble des polynômes homogènes de degré d, hyperboliques dans la direction a. On considère $P \in H$ et on fixe i, j et l tels que $l \ge i+j-1$. Il s'agit de montrer que $\lambda_l(x+y,P) \ge \lambda_i(x,P) + \lambda_j(y,P)$. D'après la question $\mathbf{9}$, les fonctions $(x,P) \mapsto \lambda_k(x,P)$ sont continues.
- Supposons montré que, pour $x \notin \mathbb{R}a$ fixé, l'ensemble SH(x) des polynômes P hyperboliques tels que P(ta-x) soit à racines simples est dense dans H. On vérifie facilement que SH(x) est un ouvert (on fixe d+1 points intercalés entre les d racines de P(ta-x), et aussi entre les racines extrêmes et les infinis, on constate que, si Q est assez proche de P, Q(ta-x) prend des valeurs de signes alternés et on applique le théorème des valeurs intermédiaires). Ainsi, SH(x) est un ouvert dense de H, fermé de Hom_d (on peut montrer que le complémentaire est ouvert ; si $Q \notin H$, il existe x tel que Q(ta-x) admette une racine complexe non réelle. En appliquant la méthode de $\mathbf{17}$, on voit que si R est assez proche de Q, R(ta-x) admet une racine non réelle). Donc H est est complet, donc de Baire.

Soit X une partie dénombrable de $V - \mathbb{R}a$ dense dans V (par exemple, les points à coordonnées rationnelles). D'après le théorème de Baire, $\bigcap_{x \in X} SH(x)$ est dense dans H. Soit (P_k) une suite de $\bigcap_x SH(x)$ convergeant vers P et (x_n) , (y_n) des suites d'éléments de X convergeant vers x et y respectivement.

On peut appliquer la question **31**:

$$\lambda_l(x_n + y_n, P_n) \geqslant \lambda_i(x_n, P_n) + \lambda_i(y_n, P_n).$$

Par passage à la limite, on a l'inégalité souhaitée.

• Montrons à présent le résultat admis. Soit $x \notin \mathbb{R}a$. Soit φ une forme linéaire non nulle s'annulant en a, mais pas en x. On la prend de norme d'opérateur égale à 1.

Posons $C := \frac{1}{\|(a \cdot \nabla)P\|}$. Considérons $\varepsilon > 0$ et le polynôme

$$Q(y) := P(y) + C\varepsilon\varphi(y)(a.\nabla)P(y),$$

qui est bien homogène de degré d. On a

$$Q(ta - x) = P(ta - x) - \varepsilon \varphi(x)(a \cdot \nabla)P(ta - x).$$

Notons e le nombre de racines simples de Q(ta - x). Déjà, ce polynôme est scindé dans \mathbb{R} car

$$Q(ta - x) = \psi(t) + \lambda \psi'(t) = e^{-\lambda t} \frac{d}{dt} (e^{\lambda t} \psi(t))$$

où $\psi(t):=P(ta-x)$. On applique ensuite le théorème de Rolle (en utilisant un point à l'infini). On suppose à présent que $\lambda \neq 0$. Notons e le nombre de racines simples de Q(ta-x). On constate par application de Rolle que le nombre de racines simples de Q(ta-x) est au moins égal à e+1. Montrons alors par récurrence descendante sur e que l'ensemble des polynômes strictement hyperboliques est dense dans l'ensemble des polynômes hyperboliques tels que P(ta-x) ait au moins e racines distinctes. Soit P un polynôme de cet ensemble. Si e=d, P est déjà strictement hyperbolique. Supposons le résultat au rang e+1. Soit P tel que P(ta-x) ait au moins e racines simples. Alors, avec les notations ci-dessus, on choisit R strictement hyperbolique tel que $\|Q-R\| \leqslant \varepsilon$. Or $\|P-Q\| \leqslant C\varepsilon \|\|\varphi\|\| \|a\cdot\nabla P\| = \varepsilon$. Donc $\|P-R\| \leqslant 2\varepsilon$, ce qui permet de conclure.