Mr: HAMANI Ahmed Mohammedia

I-Opérateurs sur les fonctions à support fini

1. (a) - Montrons que V est un sous-espace vectoriel de $\mathbb{C}^{\mathbb{Z}}$.

- $. Supp(0) = \emptyset, donc \ 0 \in V.$
- . Soient $f,g \in V$ et $\alpha \in \mathbb{C}$, alors $Supp(f + \alpha g) \subset Supp(f) \cup Supp(g) < +\infty$, donc $f + \alpha g \in V$. On conclut que V est un sous-espace vectoriel de $\mathbb{C}^{\mathbb{Z}}$.

(b) Montrons la linéarité.

.
$$\forall f,g \in \mathbb{C}^{\mathbb{Z}}, \alpha \in \mathbb{C}, k \in \mathbb{Z}, E(f+\alpha g)(k) = (f+\alpha g)(k+1) = (E(f)+\alpha E(g))(k),$$
 donc $E(f+\alpha g) = E(f)+\alpha E(g),$ d'où la linéarité.

Montrons la stabilité.

. Soit $k \in \mathbb{Z}$, on a $k \in Supp(f) \iff k-1 \in Supp(E(f))$, donc $Supp(E(f)) = Supp(f) - 1 < +\infty$, ce qui entraine la stabilité de V par E.

2. Inversilbilité de E.

- . Pour $f \in \mathbb{C}^{\mathbb{Z}}$, on définit $E'(f) \in \mathbb{C}^{\mathbb{Z}}$ par $E'(f)(k) = f(k-1) \ \forall k \in \mathbb{Z}$.
- . On vérifit facilement que $EoE'=E'oE=id_V$, donc $E\in GL(V)$ d'inverse E'.

3. (a) Montrons que $(v_i)_{i\in\mathbb{Z}}$ est une base.

. Soient
$$p \in \mathbb{N}$$
, $\alpha_1,...,\alpha_p \in \mathbb{C}$ tel que $\sum_{i=1}^p \alpha_i v_i = 0$, donc $\forall k \in [[1,p]]$, $0 = \sum_{i=1}^p \alpha_i v_i(k) = \sum_{i=1}^p \alpha_i \delta_{i,k} = \alpha_k$, donc $(v_i)_{i \in \mathbb{Z}}$ est libre.

. Soit
$$f \in V$$
 de support fini, alors $f = \sum_{k \in Supp(f)} f(k)v_k$, donc $(v_i)_{i \in \mathbb{Z}}$ est génératrice.

(b) Calcul de
$$E(v_i)$$
.

$$\forall k \in \mathbb{Z}, \, E(v_i)(k) = v_i(k+1) = v_{i-1}(k), \, \mathsf{donc} \, E(v_i) = v_{i-1}.$$

4. Montrons l'équivalence deman dée.

$$HoE = EoH + 2E \iff \forall i \in \mathbb{Z}, HoE(v_i) = EoH(v_i) + 2E(v_i) \iff \forall i \in \mathbb{Z}, H(v_{i-1}) = \lambda(i)E(v_i) + 2v_{i-1} \iff \forall i \in \mathbb{Z}, \lambda(i-1)v_{i-1} = \lambda(i)v_{i-1} + 2v_{i-1} \iff \forall i \in \mathbb{Z}, \lambda(i) = \lambda(i-1) - 2 \iff \forall i \in \mathbb{Z}, \lambda(i) = \lambda(0) - 2i.$$

5. Montrons l'équivalence deman dée.

$$EoF = FoE + H \iff \forall i \in \mathbb{Z}, EoF(v_i) = FoE(v_i) + H(v_i) \iff \forall i \in \mathbb{Z}, \mu(i)v_i = \mu(i-1)v_i + \lambda(i)v_i \iff \forall i \in \mathbb{Z}, \mu(i) = \mu(i-1) + \lambda(i) \iff \forall i \in \mathbb{Z}, \mu(i) = \mu(0) + \sum_{k=1}^{i} \lambda(k)$$

$$\text{or }\lambda(k)=\lambda(0)-2k, \text{donc }\sum_{k=1}^{i}\lambda(k)=i\lambda(0)-2\sum_{k=1}^{i}k=i\lambda(0)-i(i+1)=i(\lambda(0)-1)-i^2, \text{ ce qui donne l'égalité demandée}.$$

(a) Montrons que
$$Vect(H^n(f)/n \in \mathbb{N})$$
 est de dimension finie. Soit $f \in V$, alors $f = \sum_{k \in Supp(f)} f(k)v_k$, donc $\forall n \in \mathbb{N}, H^n(f) = \sum_{k \in Supp(f)} f(k)\lambda(k)^nv_k$, ce qui montre que $Vect(H^n(f)/n \in \mathbb{N}) \subset Vect(v_k, k \in Supp(f))$, ce qui entraine la finitude de la dimension de l'espace $Vect(H^n(f)/n \in \mathbb{N})$.

(b) Montrons qu'un s-ev de V stable par H contient un des v_i .

Soit W un sous-espace de V non réduit à $\{0\}$, donc W contient $f \in V$ non nul ,donc de support non vide, et puisque il est stable par H, il contiendra le sous-espace $Vect(H^n(f)/n \in \mathbb{N})$.

On pose
$$f = \sum_{k \in Supp(f)} f(k)v_k$$
 et $s = Card(Supp(f))$

On pose
$$f = \sum_{k \in Supp(f)} f(k)v_k$$
 et $s = Card(Supp(f))$ on obtient donc le système
$$\left\{ \begin{array}{c} H^i(f) = \sum_{k \in Supp(f)} f(k)\lambda(k)^i v_k \\ 0 \leq i < s \end{array} \right.$$
 qui est un système carré de matrice de

Vandermonde $A = (\lambda(k)^i)_{0 \le i \le s, k \in Supp(f)}$ d'inconnus $(f(k)v_k)_{k \in Supp(f)}$.

Or les $\lambda(k) = \lambda(0) - 2k$ sont distinctes deux à deux, donc A est inversible est la solution est unique

$$\text{donn\'ee par}: (v_k)_{k \in Supp(f)} = \frac{1}{f(k)} A^{-1} \left(\begin{array}{c} f \\ H(f) \\ \vdots \\ H^{s-1}(f) \end{array} \right) \in W \text{ et puisque le second membre du syst\`eme}$$

est non nul, le vecteur colonne $(v_k)_{k \in Supp(f)}$ est aussi non nul, donc W contient l'un des v_k où $k \in Supp(f)$ Supp(f).

7. (a) Inversibilité de F.

Soit $F' \in \mathcal{L}(V)$ défini par $\forall i \in \mathbb{Z}, F'(v_i) = \frac{1}{\mu(i)}v_{i-1}$, on vérifie facilement que $F'oF = FoF' = id_V$.

(b) Montrons que les ordres de E et F ne sont pas finis.

-Supposons que E et F sont d'ordre fini, alors $\exists n \in \mathbb{N}^*$ tel que $E^n = F^n = id_V$ et , donc $v_0 = E^n(v_n) = id_V$ v_n et $\mu(0)\mu(1)...\mu(n-1)v_n=F^n(v_0)=v_0$, ce qui est absurde.

(c) Noyau de H.

-Soit $f=\sum f(k)v_k\in Ker(H)$, alors $H(f)=\sum f(k)\lambda(k)v_k=-2\sum kf(k)v_k=0$, ce qui entraine que f(k)=0 pour tout $k\neq 0$ et par suite $f=f(0)v_0$.

Réciproquement $v_0 \in Ker(H)$, donc $Ker(H) = Vect(v_0)$.

Montrons que $H^r \neq id_V$.

-Si $\exists r \geq 1$ tel que $H^r = id_V$, alors $0 = \lambda(0)^r v_0 = H^r(v_0) = v_0$, ce qui est absurde.

8. (a) Montrons que $\mathbb{C}[E]$ est isomorphe à $\mathbb{C}[X]$.

-On vérifit sans difficulté que l'application $\overset{\mathbb{C}[X]}{P} \overset{\longrightarrow}{\longmapsto} \overset{\mathbb{C}[E]}{P(E)}$ est un morphisme d'algèbre, il est surjectif par construction.

- Soit $P=\sum a_k X^k$ un élément du noyau, alors $P(E)=\sum a_k E^k=0$, donc $orall i\in \mathbb{Z}$ $P(E)(v_i)=0$ $\sum a_k v_{i-k} = 0$ et la liberté de la famille $(v_i)_{i \in \mathbb{Z}}$ entraine que $a_k = 0$ pour tout $0 \le k \le deg(P)$, c'est à $\overline{\text{dire}} \ P = 0.$

(b) Montrons que $\mathbb{C}[F]$ est isomorphe à $\mathbb{C}[X]$.

-On vérifit sans difficulté que l'application $P \mapsto \mathbb{C}[X] \longrightarrow \mathbb{C}[F]$ est un morphisme d'algèbre, il est surjectif par construction.

- Soit $P=\sum a_k X^k$ un élément du noyau, alors $P(F)=\sum a_k F^k=0$

 $\operatorname{donc} P(F)(\overline{v_0}) = \sum a_k \mu(0) \mu(1) ... \mu(k-1) v_k = 0, \text{ or les } \overline{\mu(i)} \text{ sont non nuls et la famille } (v_i)_{0 \leq i \leq deg(P)} \text{ est libre, ce qui entraine que } a_k = 0 \text{ pour tout } 0 \leq k \leq deg(P), \text{ c'est à dire } P = 0.$

(c) Montrons que $\mathbb{C}[H]$ est isomorphe à $\mathbb{C}[X]$.

-On vérifit sans difficulté que l'application $P \mapsto \mathbb{C}[H] \longrightarrow \mathbb{C}[H]$ est un morphisme d'algèbre, il est surjectif par construction.

- Soit $P=\sum a_k X^k$ un élément du noyau, alors $P(H)=\sum a_k H^k=0$, donc $orall i\in \mathbb{Z}$ $P(H)(v_i)=0$ $\sum a_k \lambda(i)^k v_i = \sum (-2i)^k a_k v_i = 0 \text{ d'où } \forall i \in \mathbb{Z} \sum a_k (-2i)^k, \text{ c'est à dire } P \text{ admet une infinité de racines à savoir les } (-2i), \text{ ce qui entraine que } P = 0.$

9. Montrons que q^2 est une racine primitive.

le groupe des racines $l^{\text{lème}}$ de l'unité est $U_l = \{1, q, , ... q^{l-1}\}.$

On considère l'application $\begin{array}{cccc} \varphi & U_l & \longrightarrow & U_l \\ & x & \longmapsto & x^2 \end{array}$

 φ est un morphisme de groupes, en effet $\varphi(xy)=(xy)^2=x^2y^2=\varphi(x)\varphi(y)$. De plus si $x\in Ker(\varphi)$, alors $x^2 = 1$ et par suite $x = \pm 1$.

Si x=-1, alors $\exists k \in [[0,l-1]]$ tel que $e^{i2k\pi/l}=-1=e^{i\pi}$, donc $2k\equiv l \ mod(2)$, ce qui contredit que l est impaire.

On conclut que $Ker(\varphi) = \{1\}$, donc φ est morphisme injectif, de plus $card(U_l) < +\infty$ n donc φ est bijectif, et par suite $\varphi(U_l) = U_l = \{1, q^2, ..., q^{2(l-1)}\}.$

10. (a) Calcul de G_a^l et digonalisabilité de G_a .

-La matrice de G_a est une matrice compagnon associée au polynôme X^l-a , donc de polynôme caractéristique $(-1)^l(X^l-a)$, donc $G_a^l=aI_l$. -Les valeurs propres de G_a sont les racines $l^{\text{l}\text{e}\text{me}}$ de $a\in\mathbb{C}^*$ distinctes deux à deux, donc diagnalisable.

(b) Valeurs propres et vecteurs propres de G_a .

-On a $b^l = a$, donc $Sp(G_a) = \{b, bq, ..., bq^{l-1}\}.$

-Soit
$$\lambda_k = bq^k$$
 une valeur propre de G_a et $X = \begin{pmatrix} x_0 \\ \vdots \\ x_{l-1} \end{pmatrix} \in Ker(G_a - \lambda I_l)$, alors

$$\begin{pmatrix} -\lambda_k & 0 & 0 & \dots & a \\ 1 & -\lambda_k & 0 & \dots & 0 \\ 0 & 1 & -\lambda_k & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & \dots & 1 & -\lambda_k \end{pmatrix} \begin{pmatrix} x_0 \\ x_1 \\ \vdots \\ \vdots \\ x_{l-1} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ \vdots \\ 0 \end{pmatrix}$$

$$x_{l-1} - \lambda_k x_0 = x_0 - \lambda_k x_1 = x_1 - \lambda_k x_2 = \dots = x_{l-2} - \lambda_k x_{l-1} = 0$$

$$\begin{aligned} x_{l-1} - \lambda_k x_0 &= x_0 - \lambda_k x_1 = x_1 - \lambda_k x_2 = \ldots = x_{l-2} - \lambda_k x_{l-1} = 0 \\ \text{et par suite } Ker(G_a - \lambda_k I_l) &= Vect(u_k) \text{ où } u_k = \begin{pmatrix} \lambda_k^{l-1} \\ \vdots \\ \lambda_k^2 \\ \lambda_k \\ 1 \end{pmatrix} = \sum_{i=0}^{l-1} \lambda_k^{l-1-i} v_i \\ \frac{\lambda_k^{l-1}}{\lambda_k^{l-1}} &= 0 \end{aligned}$$

11. Montrons que P_a est un projecteur.

-Soit $i \in \mathbb{Z}$ tel que i = pl + r la division euclidienne de i par l, alors r = 0l + r est la division euclidienne de r par l, et par suite $P_a(v_i) = a^p v_r$ et $P_a(v_r) = a^0 v_r = v_r$, ce qui entraine que $P_a^2(v_i) = a^p P_a(v_r) = a_p v_r = P_a(v_i)$, donc $P_a^2 = P_a$.

Image de P_a .

$$-Im(P_a) = Vect(P_a(v_i)/i \in \mathbb{Z}) = Vect(a^p v_i/p \in \mathbb{Z} \text{ et } i \in [[0, l-1]]) = Vect(v_0, ..., v_{l-1}) = W_l.$$

III-Opérateurs quantique

12. Montrons l'équivalence demandée.

-
$$HoE = q^2 EoH \iff \forall i \in \mathbb{Z}, HoE(v_i) = q^2 EoH(v_i) \iff \forall i \in \mathbb{Z}, \lambda(i-1)v_{i-1} = q^2\lambda(i)v_{i-1} \iff \forall i \in \mathbb{Z}, \lambda(i-1) = q^2\lambda(i) \iff \forall i \in \mathbb{Z}, \lambda(i) = q^{-2i}\lambda(0).$$

13. Inversibilité de H.

- Les $\lambda(i)$ sont non nuls, on considère l'endomorphisme de V défini par $H'(v_i) = \frac{1}{\lambda(i)}v_i$.
- On vérifit sans difficulté que $H'oH = HoH' = id_V$.

14. Montrons l'équivalence demandée.

$$-EoF = FoE + H - H^{-1} \iff \forall i \in \mathbb{Z}, \mu(i)v_i = \mu(i-1)v_i + \lambda(i)v_i - \lambda(i)^{-1}v_i \iff \forall i \in \mathbb{Z}, \mu(i) = \mu(i-1) + \lambda(i) - \lambda(i)^{-1}$$

ce qui donne l'égalité souhaitée.

15. (a) La période de λ et μ divise l.

$$-q^{2\overset{\centerdot}{l}}=1,\,\mathrm{donc}\;\forall i\in\overset{\centerdot}{\mathbb{Z}},\lambda(i+l)=\lambda(0)q^{-2i-2l}=\lambda(0)q^{-2i}=\lambda(i).$$

$$-\forall i \in \mathbb{Z}, \mu(i) = \mu(0) + \sum_{k=1}^{i} (\mu(k) - \mu(k-1)), \text{ or } \mu(k+l) - \mu(k-1+l) = \lambda(k+l) - \lambda(k+l)^{-1} = \lambda(k) - \lambda(k)^{-1} = \mu(k) - \mu(k-1), \text{ donc } \mu(i+l) = \mu(i).$$

Ceci entraine λ et μ sont périodiques sur \mathbb{Z} et leur période divise l.

(b) l est la période de λ .

 q^2 est une racine primitive $l^{\text{ième}}$ de l'unité, donc la période de λ est exactement l.

(c) l est aussi la période de μ .

Si $l' \in]0, l[$ est une période de μ , alors $\forall i \in \mathbb{Z}, \lambda(0)q^{-2i-2l'} - \lambda(0)^{-1}q^{2i+2l'} = \lambda(0)q^{-2i} - \lambda(0)^{-1}q^{2i}$, ce qui entraine après calcul que $\forall i \in \mathbb{Z}, -\lambda(0)^2 = q^{4i+2l'}$, donc avec i = 0, puis i = -l', on aura $q^{2l'} = q^{-2l'}$, ce qui donne $q^{4l'} = 1$, et par suite l divise 2l', l est impair, donc l divise l', ce qui contredit 0 < l' < l.

16. (a) Égalité demandée.

$$\begin{split} C &= (q-q^{-1})EoF + q^{-1}H + qH^{-1} = (q-q^{-1})(FoE + H - H^{-1}) + q^{-1}H + qH^{-1} = \\ &= (q+q^{-1})FoE + qH + q^{-1}H^{-1}. \end{split}$$

(b) Les v_i sont des vecteurs propres de C.

Soit
$$i \in \mathbb{Z}$$
, alors $C(v_i) = (q + q^{-1})FoE(v_i) + qH(v_i) + q^{-1}H^{-1}(v_i) = ((q - q^{-1})\mu(i - 1) + q\lambda(i) + q^{-1}\lambda(i)^{-1})v_i$

donc v_i est un vecteur propre de C.

(c) Montrons que C est une homothétie.

Pour cela on va montrer que
$$R: i \longmapsto (q-q^{-1})\mu(i) + q\lambda(i) + q^{-1}\lambda(i)^{-1}$$
 est péridique de période 1 ? $\forall i \in \mathbb{Z}, \, R(i+1) = (q-q^{-1})\mu(i) + q\lambda(i+1) + q^{-1}\lambda(i+1)^{-1} = (q-q^{-1})[\mu(i-1) + \lambda(i) - \lambda(i)^{-1}] + qq^{-2}\lambda(i) + q^{-1}q^2\lambda(i)^{-1} = (q-q^{-1})\mu(i-1) + q\lambda(i) + q^{-1}\lambda(i)^{-1} = R(i).$ donc $\forall i \in \mathbb{Z}, \, R(i) = R(0) = (q-q^{-1})\mu(0) + \lambda(0)q^{-1} + \lambda(0)^{-1}q.$

(d) Une application bijective.

L'application $z \mapsto R(\lambda(0), z, q) = (q - q^{-1})z + \lambda(0)q^{-1} + \lambda(0)^{-1}q$

est une transformtion affine et $q^2 \neq 1$, donc $q - q^{-1} \neq 0$, ce qui assure que cette application est bijevtive.

(e) Une application surjective non injective.

- -Soit l'application $\varphi: z \longmapsto q^{-1}z + qz^{-1} + (q-q^{-1})\mu(0)$ est surjective. -L'équation $\varphi(z) = z'$ est équivalente à l'équation $z^2 qzz' + q^2 + (q^2-1)\mu(0) = 0$ admet au moins deux solutions dans \mathbb{C}^* , donc elle est surjective.
- -De plus $\varphi(iq) = \varphi(-iq)$ et $iq \neq -iq$, donc φ n'est pas injective.

IV-Opérateurs quantiques modulaires

17. (a) Un commutant avec P_a est compatible avec P_a .

-On a $P_a^2=P_a$, si de plus ϕ commute avec P_a , alors $P_ao\phi oP_a=P_a^2o\phi=P_ao\phi$, donc ϕ est compatible avec P_a .

(b) Compatibilité de H et H^{-1} avec P_a .

-Soit $i = pl + r \in \mathbb{Z}$ la division euclidienne de i par l.

 $-HoP_a(v_i) = H(a^p v_r) = a^p H(v_r) = a^p \lambda(r) v_r = a^p \lambda(r) v_r.$

 $-P_a o H(v_i) = P_a(\lambda(i)v_i) = \lambda(i)P_a(v_i) = \lambda(i)a^p v_r.$

or λ est périodique de période l, donc $\lambda(i) = \lambda(r)$, donc $HoP_a = P_a o H$, donc $P_a o H^{-1} = H^{-1} o P_a$, et la question précédente assure que H et H^{-1} sont compatibles avec P_a .

18. U_q est une sous-algèbre.

-Soient $\varphi, \psi \in \mathcal{U}_q, \alpha \in \mathbb{C}$, et notons θ l'endomorphisme nul de V.

 $-P_a o \theta o P_a = P_a o \theta = \theta$, $P_a o i d_V o P_a = P_a^2 = P_a = P_a o i d_V$.

 $-P_a o(\varphi + \alpha \psi) o P_a = P_a o \varphi o P_a + \alpha P_a o \psi o P_a = P_a o \varphi + \alpha P_a o \psi = P_a o(\varphi + \alpha \psi).$

 $-P_a \circ \varphi \circ \psi \circ P_a = (P_a \circ \varphi) \circ \psi \circ P_a = (P_a \circ \varphi \circ P_a) \circ \psi \circ P_a = (P_a \circ \varphi) \circ (P_a \circ \psi \circ P_a) = (P_a \circ \varphi) \circ (P_a \circ \psi) \circ (P_a \circ \psi) = (P_a \circ \varphi) \circ (P_a \circ \psi) \circ$ $=(P_a o \varphi o P_a) o \psi = P_a o \varphi o \psi.$

donc \mathcal{U}_q est une sous-algèbre de $\mathcal{L}(V)$.

19. -Soit i = pl + r où $0 \le r < l$.

Montrons que $E \in \mathcal{U}_q$.

- Si $i \neq 0 \mod(l)$, alors i-1=pl+(r-1) où $0 \leq r-1 < l-1$ donc $P_a(v_{i-1})=a^pv_{r-1}$ et par suite $P_a o E o P_a(vi) = P_a o E(a^p v_r) = a^p P_a(v_r) = a^p v_{r-1}.$

et $EoP_a(v_i) = P_a(v_{i-1}) = a^p v_{r-1}$, donc $P_a oEoP_a(v_i) = EoP_a(v_i)$.

-Si $i \equiv 0 \mod(l)$, alors -1 = -1l + (l-1), donc $P(v_{-1}) = a^{-1}v_{l-1}$ et par suite, $P_a o E o P_a(v_{pl}) = P_a o E(a^p v_0) = 0$ $a^{p}P_{a}(v_{-1}) = a^{p-1}v_{l-1}$ et $P_{a}oE(v_{pl}) = P_{a}(v_{pl-1}) = a^{p-1}v_{l-1}$, donc $P_{a}oEoP_{a}(v_{pl}) = EoP_{a}(v_{pl})$.

Montrons que $F \in \mathcal{U}_q$.

-Si $i \neq l-1 \mod(l)$, alors i+1=pl+(r+1) où $1 \leq r+1 < l$, donc $P_a(v_{i+1})=a^pv_{r+1}$ et par suite $P_a \circ F \circ P_a(v_i) = P_a \circ F(a^p v_r) = a^p \mu(r) P_a(v_{r+1}) = a^p \mu(r) v_{r+1}$

 $P_a \circ F(v_i) = \mu(i) P_a(v_{i+1}) = a^p \mu(i) v_{r+1}.$ or $\mu(i) = \mu(pl + r) = \mu(r)$, donc $P_a \circ F \circ P_a(v_i) = P_a \circ F(v_i)$.

-Si $i \equiv l-1 \mod(l)$, alors i = pl + (l-1) et i+1 = (p+1)l+0, donc $P_a(i) = a^p v_{l-1}$ et $P_a(v_{i+1}) = a^{p+1} v_0$ et

 $P_a \circ F \circ P_a(v_i) = P_a \circ F(a^p v_{l-1}) = a^p \mu(l-1) P_a(v_l) = a^{p+1} \mu(l-1) v_0.$

- . $P_a \circ F(v_i) = \mu(i) P_a(v_{i+1}) = \mu(i) a^{p+1} v_0$, or $\mu(i) = \mu(pl+l-1) = \mu(l-1)$, donc $P_a \circ F \circ P_a(v_i) = P_a \circ F(v_i)$.
- 20. (a) Existence et unicité d'un morphisme d'algèbre.

 $\psi_a: \mathcal{U}_q \longrightarrow \mathcal{L}(W_l)$ définit par $\psi_a(\phi) = P_a o \phi o P_a$ est un morphisme d'algèbre.

En effet $\forall \varphi_1, \varphi_1 \in \mathcal{U}_q, \alpha \in \mathbb{C}$

 $-\psi(\varphi_1 + \alpha \varphi_2) = P_a o(\varphi_1 + \alpha \varphi_1) o P_a = P_a o \varphi_1 o P_a + \alpha P_a o \varphi_2 o P_a = \psi_a(\varphi_1) + \alpha \psi_a(\varphi_2).$

 $-\psi_a(\phi_1o\varphi_2) = P_ao(\varphi_1o\varphi_2)oP_a = (P_ao\varphi_1)o(\varphi_2oP_a) = (P_ao\varphi_1oP_a)o(\varphi_2oP_a) = (P_ao\varphi_1oP_a)o(\varphi_2oP_a) = (P_ao\varphi_1o\varphi_2)o(\varphi_2oP_a) = (P_ao\varphi_1o\varphi_2)o(\varphi_2oP_a) = (P_ao\varphi_1o\varphi_2)o(\varphi_2oP_a) = (P_ao\varphi_1o\varphi_2)o(\varphi_2oP_a) = (P_ao\varphi_1o(\varphi_2oP_a)o(\varphi_2oP_a))o(\varphi_2oP_a) = (P_ao\varphi_1o(\varphi_2oP_a)o(\varphi_2oP_a)o(\varphi_2oP_a))o(\varphi_2o(\varphi_2oP_a)o(\varphi_2oP_a)o(\varphi_2oP_a)o(\varphi_2o(\varphi_2oP_a)o(\varphi_2$

 $= (P_a \circ \varphi_1 \circ P_a^2) \circ (\varphi_2 \circ P_a) = (P_a \circ \varphi_1 \circ P_a) \circ (P_a \circ \varphi_2 \circ P_a) = \psi_a(\varphi_1) \circ \psi_a(\varphi_2).$

 $-\forall i \in [[0, l-1]], \ \psi_a(id_V)(v_i) = P_a o i d_V o P_a(v_i) = P_a(v_i) = a^0 v_i = v_i, \ \text{donc} \ \psi_a(id_V) = i d_V.$

Pour l'unicité, supposons que ψ_a, χ_a deux morphismes d'algèbre qui vérifient l'égalité, alors $\forall \phi \in \mathcal{U}_a$, $(\psi_a - \chi_a)(\phi)oP_a$, c'est à dire $Im(P_a) \subset Ker(\psi_a - \chi_a)(\phi)$, or $Im(P_a) = \mathcal{W}_l$, donc $Ker(\psi_a - \chi_a)(\phi) = \mathcal{W}_l$, donc $(\psi_a - \chi_a)(\phi) = 0$, ceci $\forall \phi \in \mathcal{U}_q$, donc $\psi_a = \chi_a$.

(b) Équivalence demandée.

Soit $\phi \in \mathcal{U}_a$.

 $-\phi \in Ker(\psi_a) \iff \psi_a(\phi) = 0_{\mathcal{W}_l}$, or $Im(P_a) = \mathcal{W}_l$, donc $\phi \in Ker(\psi_a) \iff \psi_a(\phi)oP_a = P_ao\phi = 0 \iff 0$ $Im(\phi) \subset Ker(P_a)$, or P_a est une projection, donc $Ker(P_a) = Im(P_a - id_V) = Vect(P_a(v_i) - v_i \ / \ i \in Im(P_a - id_V))$ \mathbb{Z}) = $Vect(a^pv_r - v_i \ / \ i \in \mathbb{Z})$ où i = pl + r est la division euclidienne de i par l, ce qui entraine le résultat demandé.

21. (a) Calcul de $\psi_a(E)$.

On a -1 = (-1)l + (l-1), donc $P_a(v_{-1}) = a^{-1}v_{l-1}$ et par suite $\psi_a(E)(v_0) = \psi_a(E)oP_a(v_0) = P_aoE(v_0) = P_aoE(v_0)$ $P_a(v_{-1}) = a^{-1}v_{l-1}$.

(b) Calcul de $\psi_a(E^l)$.

 $\forall r \in [[1,l-1]], \ \psi_a(E)(v_r) = \psi_a(E)oP_a(v_r) = P_aoE(v_r) = P_a(v_{r-1}) = v_{r-1}, \ \text{donc la matrice de } \psi_a(E)$

dans la base de $(v_0,...,v_{l-1})$ est $\begin{pmatrix} 0 & 1 & O \\ \vdots & 0 & \ddots & \\ 0 & \ddots & 1 \\ a^{-1} & 0 & \dots & 0 \end{pmatrix} = {}^tMat(G_a^{-1}), \text{ donc } \psi_a(E^l) = (\psi_a(E))^l = 0$

- $a^{-1}id_V$.
- (c) Dimension de $\mathbb{C}[\psi_a(E)]$.

Le polynôme minimal de $\psi_a(E)$ est $\pi_a = X^l - a^{-1}$, donc $dim\mathcal{C}[\psi_a(E)] = deg(\pi_a) = l$.

(d) Vecteurs propres de $\psi_a(E)$.

-Les valeurs propres de $\psi_a(E)$ sont les racines l^{ième} de a^{-1} , c'est à dire $Sp(\psi_a(E))=\{b^{-1}q^k \ / \ k \in \mathbb{R}\}$ [[0, l-1]] où b est une racine $l^{i \text{ème}}$ de a.

- Un calcul analogue fait dans la question 10-b aboutit à que, le vecteur propre associé à $\lambda_k=b^{-1}q^k$

$$\mathsf{est}\,u_k = \left(\begin{array}{c} 1 \\ \lambda_k \\ \vdots \\ \lambda_k^{l-1} \end{array}\right)$$

22. (a) W contient l'un des v_i .

 $\neg \forall r \in [[0,l-1]], \ \psi_a(H)(v_r) \ = \ \psi_a(H)oP_a(v_r) \ = \ P_aoH(v_r) \ = \ \lambda(r)P_a(v_r) \ = \ \lambda(r)v_r \ = \ H(v_r), \ \mathsf{donc}$ $\psi_a(H) = H_{|\mathcal{W}_l}$.

- Donc tout sous-espace W non nul de W_l stable par $\psi_a(H)$ est stable par H, ce qui entraine d'après la question 6 - b, W contient l'un des v_i , $0 \le i < l$.

(b) Un cas où W coincide avec \mathcal{W}_l .

 $\forall r \in [[1, l-1]], \psi_a(E)(v_r) = \psi_a(E)oP_a(v_r) = P_aoE(v_r) = P_a(v_{r-1}) = v_{r-1}$ $-\psi_a(E)(v_0) = P_a(v_{-1}) = a^{-1}v_{l-1}, \text{ donc } \forall j \in [[0, l-1]], Vect\{\psi_a\psi^n(E)(v_i) \ / \ n \in \mathbb{N}\} = \mathcal{W}_l.$

-En conclusion si de plus W est stable par $\psi_a(E)$, alors W contient \mathcal{W}_l , ce qui entraine que $W = \mathcal{W}_l$.

23. Condition nécessaire et suffisante de nilpotence de $\psi_a(F)$.

- Soit $r \in [[r, \updownarrow -\infty]], \ \psi_a(F)(v_r) = \psi_a(F)oP_a(v_r) = P_aoF(v_r) = \mu(r)P_a(v_{r+1}), \ \text{donc} \ \psi_a(F)(v_r) = \mu(r)v_{r+1} \ \text{Since } \{r\}$ $r \in [[0, l-2]]$ et $\psi_a(F)(v_{l-1}) = a\mu(l-1)v_0$.

-La matrice de $\psi_a(F)$ dans la base $(v_0,...,v_{l-1})$ est $\left(\begin{array}{cccc} 0 & 0 & \dots & 0 & a\mu(l-1) \\ \mu(0) & 0 & \ddots & \vdots & 0 \\ & & \mu(1) & \ddots & 0 & \vdots \\ & & \ddots & \ddots & 0 \end{array} \right)$

donc $\psi_a^l(F) = a\mu(0)\mu(1)...\mu(l-1)id_V$, ce qui entraine que $\psi_a(F)$ est nilpotent

si, et seulement si $\exists r \in [[0, l-1]]$ tel que $\mu(r) = 0$

si, et seulement si $R(\lambda(0),\mu(0),q)=\dot{\lambda}(0)-\dot{1}q^{2r+1}+\lambda(0)q^{-2r-1}.$