X-ENS 2013

Mathématiques A

Un corrigé proposé par : **AQALMOUN MOHAMED** agrégé de mathématiques CPGE Khouribga

Première partie : Opérateurs sur les fonctions à support fini

- 1. (a) La fonction nulle est un élément de V. Si f et g sont des éléments de V, et $\lambda \in \mathbb{C}$, alors $supp(f + \lambda g) \subset supp(f) \cup supp(g)$, ainsi $f + \lambda g$ est un éléments de V.
 - (b) Soient $f, g \in \mathbb{C}^{\mathbb{Z}}$, et $\lambda \in \mathbb{C}$, on a pour tout $k \in \mathbb{Z}$, $E(f + \lambda g)(k) = (f + \lambda g)(k + 1) = f(k + 1) + \lambda g(k + 1) = E(f)(k) + \lambda E(g)(k)$, donc $E(f + \lambda g) = E(f) + \lambda E(g)$. Si f est à support fini, pour tout $k \in \mathbb{Z}$, $k \in supp(E(f))$ si, et seulement si, $E(f)(k) \neq 0$ si, et seulement si, $f(k + 1) \neq 0$ si, et seulement si, $k + 1 \in supp(f)$, ainsi $supp(E(f)) = \{k \in \mathbb{Z} \ , \ k + 1 \in supp(f)\}$ qui est un ensemble fini. On en déduit que V est stable par E.
- 2. Si $f \in \ker(E)$, alors $\forall k \in \mathbb{Z}$, f(k+1) = 0, donc $\forall k \in \mathbb{Z}$, f(k) = f(k-1+1) = 0 d'où f = 0.

Pour $g \in V$, pour tout $k \in \mathbb{Z}$ on pose f(k) = g(k-1), on a alors E(f) = g

- 3. (a) Soient A une partie finie de \mathbb{Z} , et $(\lambda_i)_{i\in A}$ une famille de nombres complexes telles que $\sum_{i\in A}\lambda_iv_i=0$, pour $i_0\in A$ on a $(\sum_{i\in A}\lambda_iv_i)(i_0)=\lambda_{i_0}v_{i_0}(i_0)=\lambda_{i_0}$, donc $\lambda_{i_0}=0$, donc la famille $(v_i)_{i\in \mathbb{Z}}$ est libre. Pour $f\in V$, on pose A=supp(f) partie finie de \mathbb{Z} , on a alors $f=\sum_{i\in A}f(i)v_i$, on en déduit que $(v_i)_{i\in \mathbb{Z}}$ est une base de V.
 - (b) Pour $k \in \mathbb{Z}$, $E(v_i)(k) = v_i(k+1) = 1$ si k = i-1 et 0 sinon. donc $E(v_i) = v_{i-1}$.
- 4. Pour tout $i \in \mathbb{Z}$, $(H \circ E)(v_i) = H(v_{i-1}) = \lambda(i-1)v_{i-1}$ et $(E \circ H + 2E)(v_i) = E(\lambda(i)v_i) + 2v_{i-1} = \lambda(i)v_{i-1} + 2v_{i-1}$, puisque $(v_i)_{i \in \mathbb{Z}}$ est une base de V, donc on a égalité si, et seulement si, $\forall i \in \mathbb{Z}$, $(\lambda(i) + 2)v_{i-1} = \lambda(i-1)v_{i-1}$ cette dernière est vérifié si, et seulement si, $\forall i \in \mathbb{Z}$, $\lambda(i) \lambda(i-1) = -2$, si $i \geq 1$ on obtient $\sum_{i=1}^{i} (\lambda(k) \lambda(k-1)) = -2 \sum_{i=1}^{i} 1$, d'où
 - $\begin{aligned} &si,\,\forall i\in\mathbb{Z},\,\lambda(i)-\lambda(i-1)=-2,\,si\,\,i\geq 1\,\,\text{on obtient}\,\sum_{k=1}^i(\lambda(k)-\lambda(k-1))=-2\sum_{k=1}^i1,\,d\text{'où}\\ &\lambda(i)-\lambda(0)=-2i,\,si\,\,i<0\,\,\text{on obtient}\,\sum_{k=1}^{-i}(\lambda(i+k)-\lambda(i+k-1))=-\sum_{k=1}^{-i}2,\,c\text{'est-à-dire}\\ &\lambda(0)-\lambda(i)=2i,\,d\text{onc}\,\,\lambda(i)=\lambda(0)+2i,d\text{'où}\,\,\forall i\in\mathbb{Z}\,\,,\,\lambda(i)=\lambda(0)-2i,\,\text{et la formule est aussi vérifiée pour }i=0. \end{aligned}$

Réciproquement si $\forall i \in \mathbb{Z}$, $\lambda(i) = \lambda(0) - 2i$ alors $\forall i \in \mathbb{Z}$ $\lambda(i) - \lambda(i-1) = -2$, d'où l'équivalence.

5. Pour tout $i \in \mathbb{Z}$, on a $E \circ F(v_i) = \mu(i)v_i$ et $F \circ E(v_i) + H(v_i) = \mu(i-1)v_i + \lambda(i)v_i$, puisque la famille $(v_i)_{i \in \mathbb{Z}}$ est une base de V, alors $E \circ F = F \circ E + H$ si, et seulement si, $\forall i \in \mathbb{Z}$, $\mu(i)v_i = (\mu(i-1) + \lambda(i))v_i$, si, et seulement si, $\forall i \in \mathbb{Z}$, $\mu(i) = \mu(i-1) + \lambda(i)$ ou encore $\forall i \in \mathbb{Z}$, $\mu(i) - \mu(i-1) = \lambda(i)$, par un même raisonnement que la question précédente, on obtient $\mu(i) = \mu(0) + i(\lambda(0) - 1) - i^2$, réciproquement si $\forall i \in \mathbb{Z}$, $\mu(i) = \mu(0) + i(\lambda(i) - 1) - i^2$, alors μ vérifie $\mu(i) - \mu(i-1) = \lambda(i)$. D'où l'équivalence.

6. (a) Pour $f \in V$, posons A = supp(f) qui est une partie finie de \mathbb{Z} , on a $f = \sum_{i \in A} f(i)v_i$, on a pour tout $n \in \mathbb{N}$, $H^n(f) = \sum_{i \in A} f(i)^n v_i$ qui est un élément du sous espace vectoriel engendré par la famille $(v_i)_{i \in A}$, donc le sous espace vectoriel engendré par les $H^n(f)$, $n \in \mathbb{N}$, est inclus dans le sous espace vectoriel engendré par la famille $(v_i)_{i \in A}$, qui est de dimension fini.

- (b) Soit U un sous espace vectoriel de V non réduit à $\{0\}$, stable par H, soit f un élément non nul de U, le sous espace vectoriel U' engendré par les $H^n(f)$, $n \in \mathbb{N}$ est dimension fini et stable par H, considérons H' l'endomorphisme induit par H sur U', comme U' est de dimension fini alors H admet au moins une valeur propre $\alpha \in \mathbb{C}$ associé à un vecteur propre $g \in U' \setminus \{0\}$, de sorte que $H'(g) = \alpha g$ ou encore $H(g) = \alpha g$. Or $g \in V \setminus \{0\}$, alors B = supp(g) est une partie de \mathbb{Z} non vide et finie. Puisque $g = \sum_{i \in B} g(i)v_i$ donc $\sum_{i \in B} \lambda(i)v_i = \alpha \sum_{i \in B} v_i$, on obtient $\forall i \in B$, $\lambda(i) = \alpha$, comme λ est injective $(\lambda(i) = \lambda(0) 2i)$, cette égalité n'est vérifie que si B est réduit à un singleton $B = \{i_0\}$, il en résulte que $g = v_{i_0} \in U'$, donc $v_{i_0} \in U$.
- 7. (a) $\mu(i) = 1 i i^2$, remarquons que l'équation $1 X X^2 = 0$ n'a pas de solution dans \mathbb{Z} , donc $\forall i \in \mathbb{Z}$, $\mu(i) \neq 0$, donc la famille $(\mu(i)v_{i+1})_{i \in \mathbb{Z}}$ est une base de V (avec un changement d'indice il s'agit de la famille $(\mu(i-1)v_i)_{i \in \mathbb{Z}}$), on en déduit que F transforme une base de V en une base de V, donc $F \in GL(V)$.
 - (b) Pour tout $n \in \mathbb{N}^*$, et tout $i \in Z$, $E^n(v_i) = v_{i+n} \neq v_i$, donc $\forall n \in \mathbb{N}^*$, $E^n \neq \operatorname{Id}_V$, autrement dit E est d'ordre infini. De même, pour tout $n \in \mathbb{N}^*$, et tout $i \in \mathbb{Z}$, $F^n(v_i) = (\prod_{k=0}^{n-1} \mu(i+k))v_{i+n} \neq v_i$, donc $\forall n \in \mathbb{N}$, $F^n \neq \operatorname{Id}_V$, ainsi F est d'ordre infini.
 - $\forall n \in \mathbb{N}, \ F^n \neq \operatorname{Id}_V, \ \text{ainsi} \ F \ \text{est d'ordre infini.}$ $(c) \ \operatorname{Soit} \ f = \sum_{i \in A} f(i)v_i \in V, \ \operatorname{avec} \ A = \operatorname{supp}(f); \ \operatorname{si} \ f \in \ker(H), \ \operatorname{alors} \sum_{i \in A} \lambda(i)f(i)v_i = 0, \\ \operatorname{donc} \ \forall i \in A, \ \lambda(i)f(i) = 0, \ \operatorname{ainsi} \ \forall i \in A, \ \lambda(i) = 0, \ \operatorname{mais} \ \lambda(i) = 0 \ \operatorname{si}, \ \operatorname{et} \ \operatorname{seulement} \ \operatorname{si}, \\ i = 0, \ \operatorname{il} \ \operatorname{vient} \ \operatorname{que} \ A \subset \{0\}, \ \operatorname{d'où} \ f = f(0)v_0 \ \operatorname{ou} \ f = 0, \ \operatorname{on} \ \operatorname{en} \ \operatorname{d\'eduit} \ \operatorname{que} \ \operatorname{ker} \ H \ \operatorname{est} \ \operatorname{la} \\ \operatorname{droite} \ \operatorname{engendr\'e} \ \operatorname{par} \ v_0. \\ H \ \operatorname{n'est} \ \operatorname{pas} \ \operatorname{injective}, \ \operatorname{donc} \ \operatorname{pour} \ \operatorname{tout} \ r \geq v, \ H^r \ \operatorname{n'est} \ \operatorname{pas} \ \operatorname{injective}, \ \operatorname{d'où} \ \operatorname{pour} \ \operatorname{tout} \\ r \geq 1, \ H^r \neq \operatorname{Id}_V.$
- 8. (a) On considère le morphisme d'algèbres $\varphi: \mathbb{C}[X] \to \mathbb{C}[E]$, définie par $\varphi(p) = p(E)$. φ est un morphisme d'algèbres surjectif, pour l'injectivité: $\text{Soit } p \in \ker \varphi, \ p \text{ s'écrit sous la forme } p = \sum_{k=0}^n a_k X^k, \ \text{donc } \varphi(p) = \sum_{k=0}^n a_k E^k = 0, \ \text{en particulier } \varphi(p)(v_n) = 0, \ \text{d'autre part, pour tout } k \in \mathbb{N}, \ E^k(v_n) = v_{n-k}, \ \text{on obtient } \sum_{k=0}^n a_k v_{n-k} = 0, \ \text{puisque la famille } (v_i)_{i\in\mathbb{Z}} \ \text{est libre, on en déduit que les } a_k \ \text{sont nuls, ou encore le polynôme } p \ \text{est nul.}$
 - (b) On considère le morphisme d'algèbres $\varphi: \mathbb{C}[X] \to \mathbb{C}[F]$, définie par, $\varphi(p) = p(F)$, c'est un morphime surjectif, si $p = \sum_{k=0}^{n} a_k X^k$ est dans $\ker \varphi$, alors $\varphi(F)(v_0) = 0$, d'autre part $\forall k \in \mathbb{N}$, $F^k(v_0) = \mu(k)v_k$ (la formule est vraie pour k = 0, puisque $\mu(0) = 1$), on obtient $\sum_{k=0}^{n} a_k \mu(k) v_k = 0$, comme la famille $(v_i)_{i \in \mathbb{Z}}$ est libre, alors

 $0 \le k \le n$, $a_k \mu(k) = 0$, l'injectivité de l'opérateur F et le fait $\forall i \in \mathbb{Z}$ $F(v_i) = \mu(i)v_{i+1}$, donne $\forall i \in \mathbb{Z}$; $\mu(i) \ne 0$, on en déduit alors que les a_k sont tous nuls, autrement dit le polynôme p est nul.

(c) Comme dans les questions précédentes, on considère $\varphi: \mathbb{C}[X] \to \mathbb{C}[H]$, définie par $\varphi(p) = p(H)$, qui est un morphisme d'algèbres surjectif, montrons qu'il est injectif; si un polynôme $p = \sum_{k=0}^n a_k X^k$ est dans $\ker \varphi$, alors $\sum_{k=0}^n H^k = 0$, $\forall i \in \mathbb{Z}$, $\forall k \in \mathbb{N}$, on a $H^k(v_i) = \lambda(i)^k v_i$, on obtient $\forall i \in \mathbb{Z}$, $\sum_{k=0}^n a_k \lambda(i)^k v_i = 0$, puisque $v_i \neq 0$, alors $\forall \in \mathbb{Z}$, $p(\lambda(i)) = 0$, les $\lambda(i)$ sont des racines de p, ainsi le polynôme admet une infinité de racines " λ injective ", donc p est le polynôme nul.

Deuxième partie : Intermède

- 9. $(q^2)^{\ell} = q^{2\ell} = 1$, alors q est une racine ℓ -ième de l'unité. Soit $1 \leq r \leq \ell$, tel que $(q^2)^r = 1$, on a alors $q^{2r} = 1$, donc ℓ divise 2r, et comme ℓ est impair alors ℓ divise r, par suite l = r.
- 10. (a) Pour tout $0 \le i < \ell$, $G_a^{\ell}(v_i) = av_i$, donc $G_a^{\ell} = a \operatorname{Id}_{W_{\ell}}$. $(-1)^{\ell}(X^{\ell}-a)$ est un "le" polynôme annulateur "caractéristique" de G_a^{ℓ} , scindé à racine simples $(a \ne 0)$, donc G_a est diagonalisable.
 - (b) Les valeurs propres de G_a^{ℓ} sont les bq^i , $0 \le i < \ell$. Soient $0 \le i < \ell$ et v un vecteur propre associé à la valeur propre bq^i , alors $G_a(v) = bq^iv$, si on note par X la matrice de v dans la base $(v_0, \ldots, v_{\ell-1})$, alors l'équation $G_a(v) = bq^iv$ est équivalente au système linéaire $AX = bq^iX$ où A est la matrice définie en question 10. La résolution de ce système linéaire donne ${}^tX = \alpha((bq^i)^{-1}, (bq^i)^{-2}, \ldots, (bq^i)^{-\ell})$ où $\alpha \in \mathbb{C}$, donc $\ker(G_a - bq^i \operatorname{Id}_{W_\ell})$ est le sous espace vectoriel engendré par le vecteur; $\sum_{k=0}^{\ell-1} (bq^i)^{-k} v_k$.
- 11. $P_a(P_a(v_i)) = P_a(a^p v_r) = a^p P_a(v_r) = a^p v_r = P_a(v_i)$, donc $P_a^2 = P_a$ ainsi P_a est un projecteur. On a aussi $\forall i \in \mathbb{Z}$, $P_a(v_i) \in w_\ell$, réciproquement si $0 \le r < \ell$, $v_r = P_a(v_r)$ donc P_a est un projecteur d'image w_ℓ .

Troisième partie : Opérateurs quantiques

- 12. $(H \circ E)(v_i) = \lambda(i-1)v_{i-1}$ et $(E \circ H)(v_i) = \lambda(i)v_{i-1}$, donc l'égalité $H \circ E = q^2E \circ H$ si, et seulement si, $\forall i \in \mathbb{Z}$, $\lambda(i-1) = q^2\lambda(i)$ si, et seulement si, $\forall i \in \mathbb{Z}$, $\lambda(i) = \lambda(0)q^{-2i}$.
- 13. Supposons que ker H est non nul, et soit $f \in \ker H$, alors $H(E(f)) = q^2 E(H(f)) = 0$, donc $E(f) \in \ker H$, le sous espace vectoriel ker H est stable par E, d'après la question 6, il contient au moins un des v_i , il existe alors $j \in \mathbb{Z}$ tel que $H(v_j) = 0$, ceci donne $\lambda(j) = 0$ (mais $\lambda(j) = \lambda(0)q^{-2j}$), on a abouti à une contradiction, donc H est injective. pour tout $i \in \mathbb{Z}$, $v_i \in \operatorname{Im} H$, donc H est surjective.
- 14. D'abord pour $i \in \mathbb{Z}$, $H^{-1}(v_i) = \frac{1}{\lambda(i)}v_i$, donc l'égalité $E \circ F = F \circ E + H H^{-1}$ à lieu si, et seulement si, $\forall i \in \mathbb{Z}$, $\mu(i) = \mu(i-1) + \lambda(i) \lambda(i)^{-1}$ si, et seulement si, $\forall i \in \mathbb{Z}$, $\mu(i) = \mu(i-1) + \lambda(0)q^{-2i} \lambda(0)^{-1}q^{2i}$.

15. (a) Pour tout $i \in \mathbb{Z}$, $\lambda(i+\ell) = \lambda(0)q^{-2i}q^{-2\ell} = \lambda(0)q^{-2i} = \lambda(i)$ et

$$\mu(i+\ell) - \mu(\ell) = \sum_{k=0}^{\ell-1} \mu(i+k+1) - \mu(i+k)$$

$$= \lambda(0)q^{-2(i+1)} \sum_{k=0}^{\ell-1} q^{-2k} - \lambda(0)^{-1} q^{2i} \sum_{k=1}^{\ell-1} q^{2k}$$

$$= \lambda(0)q^{-2(i+1)} \frac{q^{-2\ell} - 1}{q^{-2} - 1} - \lambda(0)^{-1} q^{2i} \frac{q^{2\ell} - 1}{q^{2} - 1} = 0$$

, donc $\mu(i+\ell)=\mu(i)$, les deux fonctions λ et μ sont périodiques dont ℓ est une période, donc multiple de leurs périodes.

- (b) Soit r la période de λ , on a $\lambda(r) = \lambda(0)$, donc $(q^2)^r = 1$ et comme q^2 est une racine primitive ℓ -ième de l'unité, alors ℓ divise r, et par la question précédente on déduit que $r = \ell$.
- (c) Notons s la période de μ (diviseur de ℓ avec $1 \le s \le \ell$), alors $\forall i \in \mathbb{Z}$, $\mu(i+s) \mu(i) = 0$, et d'autre part $\forall i \in \mathbb{Z}$, on a :

$$\begin{split} \mu(i+s) - \mu(i) &= \sum_{k=0}^{s-1} \mu(i+k+1) - \mu(i+k) \\ &= \lambda(0)q^{-2(i+1)} \frac{1-q^{-2s}}{1-q^{-2}} - \lambda(0)^{-1} q^{2(i+1)} \frac{q^{2s}-1}{q^2-1} \\ &= \lambda(0)^{-1} q^{-2(i-1)} \left(\frac{q^{2s}-1}{q^2-1} \right) \left[\lambda(0)^2 q^{-2(s+1)} - q^{4i} \right] \end{split}$$

Comme la suite $(q^{4i})_{i\in\mathbb{Z}}$ n'est pas constante, alors $q^{2s}=1$ et donc ℓ divise s, ceci montrer que $\ell=s$.

- 16. (a) $(q-q^{-1})(F \circ E + H H^{-1}) + q^{-1}H + qH^{-1} = (q-q^{-1})F \circ E + (q-q^{-1})(H H^{-1}) + q^{-1}H + qH^{-1} = C$.
 - (b) $Cv_i = (q q^{-1})(F \circ E)v_i + qHv_i + q^{-1}H^{-1}v_i = (q q^{-1})\mu(i 1)v_i + q\lambda(i)v_i + q^{-1}\lambda(i)^{-1}v_i = \alpha_i v_i$ où $\alpha_i = (q q^{-1})\mu(i 1) + q\lambda(i) + q^{-1}\lambda(i)^{-1}$, donc v_i est un vecteur propre associé à la valeur propre α_i .
 - (c) Il suffit de montrer que la suite $(\alpha_i)_{n\in\mathbb{Z}}$ est constante. Pour $i\in\mathbb{Z}$;

$$\alpha_{i+1} = (q - q^{-1})\mu(i) + q\lambda(i+1) + q^{-1}\lambda(i+1)^{-1}$$

$$= (q - q^{-1})(\mu(i-1) + \lambda(i) - \lambda(i)^{-1}) + q^{-1}\lambda(i) + q\lambda(i)^{-1}$$

$$= (q - q^{-1})\mu(i-1) + q\lambda(i) + q^{-1}\lambda(i)^{-1} = \alpha_i$$

, on en déduit alors que C est une homothétie de rapport $\alpha_1=(q-q^{-1})\mu()+q\lambda(1)+q^{-1}\lambda(1)^{-1}=(q-q^{-1})\mu(0)+q^{-1}\lambda(0)+q\lambda(0)^{-1}$, ainsi

$$R(\lambda(0), \mu(0), q) = (q - q^{-1})\mu(0) + q^{-1}\lambda(0) + q\lambda(0)^{-1}$$

Remarque: Pour tout $i \in \mathbb{Z}$:

$$R(\lambda(0), \mu(0), q) = (q - q^{-1})\mu(i) + q^{-1}\lambda(i) + q\lambda(i)^{-1}$$

- (d) Il s'agit de l'application $\mathbb{C} \to \mathbb{C}$, définie par $z \mapsto (q q^{-1})z + q^{-1}\lambda(0) + q\lambda(0)^{-1}$ qui est une bijection puisque $q q^{-1} \neq 0$ ou encore puisque $q^2 \neq 1$.
- (e) Ici il s'agit de l'application $\mathbb{C}^* \to \mathbb{C}$, définie par $z \mapsto q^{-1}z + qz^{-1} + k$ où k est la constante $(q-q^{-1})\mu(0)$. Soit $Z \in \mathbb{C}$, alors l'équation $q^{-1}z + qz^{-1} + k = Z$ admet des solution dans \mathbb{C}^* si, et seulement si, l'équation $z^2 + q(k-Z)z + q^2 = 0$ admet des solution dans \mathbb{C}^* . Cette dernière équation admet des solutions dans \mathbb{C}^* (0 n'est pas solution), donc l'application est surjective.

En calculant l'image de iq et -iq on voit bien que l'application n'est pas injective.

Quatrième partie : Opérateurs quantiques modulaires

- 17. (a) $P_a \circ \phi \circ P_a = P_a^2 \circ \phi = P_a \circ \phi$, donc ϕ est compatible avec P_a .
 - (b) Soit $i \in \mathbb{Z}$, avec $i = p\ell + r$ la division euclidienne de i par ℓ , on a $P_a \circ H \circ P_a v_i = P_a \circ H(a^p v_r) = a^p P_a(\lambda(r) v_r) = a^p \lambda(r) v_r$ $P_a \circ H v_i = P_a(\lambda(i) v_i) = \lambda(i) a^p v_r = \lambda(r + p\ell) a^p v_r = \lambda(r) a^p v_r$ (λ est ℓ -périodique). Donc H est compatible avec P_a . De même on obtient $P_a \circ H^{-1} \circ P_a v_i = a^p \lambda(r)^{-1} v_r = P_a \circ H^{-1} v_i$, c'est-à-dire H^{-1} est
- 18. D'abord $\mathrm{Id}_V \in \mathcal{U}_q$.

Pour $\psi, \phi \in \mathcal{U}_q$ et $\lambda \in \mathbb{C}$ on a:

• $P_a \circ (\phi + \lambda \psi) \circ P_a = P_a \circ \phi \circ P_a + \lambda P_a \circ \psi P_a = P_a \circ \phi + \lambda P_a \circ \phi = P_a \circ (\phi + \lambda \psi).$

•

$$\begin{array}{rcl} P_a \circ \phi \circ \psi \circ P_a & = & [P_a \circ \phi \circ P_a] \circ \psi \circ P_a \\ & = & P_a \circ \phi \circ [P_a \circ \psi \circ P_a] \\ & = & P_a \circ \phi \circ [P_a \circ \psi] \\ & = & [P_a \circ \phi \circ P_a] \circ \psi \\ & = & P_a \circ \phi \circ \psi \end{array}$$

Donc \mathcal{U}_q est une sous algèbre de $\mathcal{L}(V)$.

- 19. Notons $i = p\ell + r$ la division euclidienne de i par ℓ .
- $(P_a \circ E \circ P_a)(v_i) = P_a(a^p v_{r-1}) = a^p P_a(v_{r-1})$; $\underline{Si \ r = 0}$, alors $P_a(v_{r-1}) = P_a(v_{-1}) = a^{-1} v_{\ell-1}$, donc $(P_a \circ E \circ P_a)(v_i) = a^{p-1} v_{\ell-1}$. Et on a aussi $P_a(E(v_i)) = P_a(v_{i-1}) = P_a(v_{(p-1)\ell+\ell-1}) = a^{p-1} v_{\ell-1}$. $\underline{Si \ 0 < r < \ell}$, c'est-à-dire $0 \le r - 1$, alors $P_a(v_{r-1}) = v_{r-1}$, donc $(P_a \circ E \circ P_a)(v_i) = a^p v_{r-1}$, et on a aussi $P_a(E(v_i)) = P_a(a^q v_{r-1}) = a^p v_{r-1}$. Il en résulte que $P_a \circ E \circ P_a = P_a \circ E$.

• $(P_a \circ F \circ P_a)(v_i) = a^p \mu(r) P_a(v_{r+1})$;

- $\underbrace{Si\ r=\ell-1}_{a^{p+1}\mu(r)v_0,\ \text{et on a aussi}}_{f} (P_a\circ F)(v_i) = 1.\ell+0,\ \text{alors}\ P_a(v_{r+1}) = av_0,\ \text{puis}\ (P_a\circ F\circ P_a)(v_i) = av_0,\ \text{puis}\ (P_a\circ F\circ P_a)(v_i) = av_0,\ \text{puis}\ (P_a\circ F\circ P_a)(v_i) = \mu(i)P_a(v_{(p+1)\ell}) = \mu(i)$
- 20. (a) Pour $\phi \in \mathcal{U}_q$, on pose $\Psi_a(\phi) = P_a \circ \phi/W_\ell$, on a alors $\forall \phi \in \mathcal{U}_q$, $\Psi_a(\phi) \circ P_a = P_a \circ \phi/W_\ell \circ P_a = P_a \circ \phi \circ P_a = P_a \circ \phi$.

Soit $\Psi'_a: \mathcal{U}_q \to \mathcal{L}(W_\ell)$, tel que $\forall \phi \in \mathcal{U}_q$, $\Psi'_a(\phi) \circ P_a = P_a \circ \phi$, soit $\phi \in \mathcal{U}_q$ on a $\Psi_a(\phi), \Psi'_a(\phi) \in \mathcal{L}(W_\ell)$, pour $0 \le i < \ell$, on a: $(\Psi'_a(\phi) \circ P_a)(v_i) = (\Psi_a \circ P_a)(v_i)$, comme $P_a(v_i) = v_i$ alors $\Psi'_a(\phi)v_i = \Psi_a(\phi)v_i$, d'où $\Psi'_a(\phi) = \psi_a(\phi)$, on en déduit alors que $\Psi'_a = \Psi_a$.

(b) Soit $\phi \in \mathcal{U}_q$ tel que $\phi \in \ker \Psi_a$. Soit $g \in V$, posons $\phi(g) = \sum_{i \in A} \alpha_i v_i$ avec A une partie fine de \mathbb{Z} , pour chaque $i \in A$ on note $i = n \cdot \ell + r$; la division euclidienne de i par ℓ on a alors $\phi(g) = \sum_i \alpha_i v_i = 1$

on note $i = p_i \ell + r_i$ la division euclidienne de i par ℓ , on a alors $\phi(g) = \sum_{i \in A} \alpha_i v_i =$

 $\sum_{s=0}^{\ell-1} \sum_{\substack{r_i=s\\i\in A}} \alpha_i v_i, \text{ par hypoth\`ese } \Psi_a(\phi) = 0 \text{ , alors } \Psi_a(\phi)(g) = 0, \text{ donc } \sum_{s=0}^{\ell-1} \sum_{\substack{r_i=s\\i\in A}} \alpha_i P_a(v_i) = 0,$

ainsi $\sum_{s=0}^{\ell-1} \sum_{\substack{r_i=s\\i\in A}} \alpha_i a^{p_i} v_s = 0$, par la liberté de la famille $(v_s)_{0\leq s<\ell}$, on obtient, pour tout

 $s \ (0 \le s < \ell)$, on a $\sum_{\substack{r_i = s \ i \in A}} \alpha_i a^{p_i} v_s = 0$, on en déduit alors que;

$$\phi(g) = \sum_{i \in A} \alpha_i v_i$$

$$= \sum_{s=0}^{\ell-1} \sum_{\substack{r_i = s \\ i \in A}} \alpha_i v_i - \sum_{s=0}^{\ell-1} \sum_{\substack{r_i = s \\ i \in A}} \alpha_i a^{p_i} v_s$$

$$= \sum_{s=0}^{\ell-1} \sum_{\substack{r_i = s \\ i \in A}} \alpha_i (v_i - a^{p_i} v_s)$$

$$= \sum_{s=0}^{\ell-1} \sum_{\substack{r_i = s \\ i \in A}} \alpha_i (v_i - a^{p_i} v_{r_i})$$

La réciproque est immédiate.

- 21. (a) $\Psi_a(E)(v_0) = P_a(E(v_0)) = P_a(v_{-1})$, la division euclidienne de -1 par ℓ s'écrit $-1 = (-1).\ell + (\ell 1)$, donc $\Psi_a(E)(v_0) = a^{-1}v_{\ell-1}$.
 - (b) On a $\Psi_a(E)(v_0) = a^{-1}v_{\ell-1}$, et $0 < \forall i < \ell$, $\Psi_a(E)(v_i) = v_{i-1}$, on compose ℓ -fois on obtient $0 \le \forall i < \ell$, $\Psi_a(E)^{\ell}(v_i) = a^{-1}v_i$, c'est-à-dire $\Psi_a(E^{\ell})(v_i) = a^{-1}v_i$, d'où $\Psi_a(E^{\ell}) = a^{-1} \operatorname{Id}_{W_{\ell}}$.
 - (c) Il est facile de vérifier que $X^{\ell} a^{-1}$ est le polynôme minimale de $\Psi_a(E)$, donc $\mathbb{C}[\Psi_a(E)] = \bigoplus_{k=0}^{\ell-1} \mathbb{C}\Psi_a(E)^k$, ainsi $\dim(\mathbb{C}[\Psi_a(E)]) = \ell$.
 - (d) Les vecteurs propres de $\psi_a(E)$, d'abord les valeurs propres de $\Psi_a(E)$ sont les racines ℓ -ièmes de a^{-1} , ce sont alors les nombres $(bq^i)^{-1}$, $0 \le i < \ell 1$. D'une façon analogue à la (question 10.b), on démontrer que $\ker(\Psi_a(E) - (bq^i)^{-1} \operatorname{Id}_{W_\ell})$ est le sous espace vectoriel engendré par u_i où u_i et le vecteur de composante $((bq^i)^{-1}, (bq^i)^{-2}, \ldots, (bq^i)^{-\ell})$ dans la base $(v_0, v_1, \ldots, v_{\ell-1})$.
- 22. (a) Si W est un sous espace vectoriel de W_{ℓ} stable par $\Psi_a(H)$, alors l'endomorphisme induit par $\Psi_a(H)$ sur W admet au moins un vecteur propre $v \in W$, par la même façon que la question 6.b, le vecteur v est l'un des vecteur v_i , $0 \le i < \ell$.

(b) Si de plus W est stable par $\Psi_a(E)$, alors les éléments $v_r, \Psi_a(E)(v_r), \ldots, \Psi_a(E)^{\ell-1}(v_r)$ sont dans W, où $0 \le r < \ell$ tel que $v_r \in W$, c'est-à-dire W contient les vecteurs $v_r, \ldots, v_{\ell-1}, \ldots, a^{-1}v_0, \ldots, a^{-1}v_{r-1}$. Or la famille formé par ces vecteurs forme une base de W_ℓ , alors $W = W_\ell$.

23. Expression le l'opérateur $\Psi_a(F)^{\ell}$, pour tout $0 \leq i < \ell$, on a $\Psi_a(F)^{\ell}(v_i) = a(\prod_{k=0}^{\ell-1} \mu(k))v_i$

d'où $\Psi_a(F)^{\ell} = (\prod_{k=0}^{\ell-1} \mu(k)) \operatorname{Id}_{W_{\ell}}$, le polynôme caractéristique de $\Psi_a(F)$ est $(-1)^{\ell} X^{\ell} - (-1)^{\ell} a \prod_{k=0}^{\ell-1} \mu(k)$, donc $\Psi_a(F)$ est nilpotent si, et seulement si, $\prod_{k=1}^{\ell-1} \mu(k) = 0$ si, et seule-

(-1) a $\prod_{k=0} \mu(k)$, donc $\Psi_a(F)$ est nilpotent si, et seulement si, $\prod_{k=1} \mu(k) = 0$ si, et seulement si, $0 \le \exists k < \ell$ tel que $\mu(k) = 0$, comme $\forall i \in \mathbb{Z}$, $R(\lambda(0), \mu(0), q) = (q - q^{-1})\mu(i) + q^{-1}\lambda(i) + q\lambda(i)^{-1}$, alors $\Psi_a(F)$ est nilpotent si, et seulement si, $0 \le \exists k < \ell$ tel que $R(\lambda(0), \mu(0), q) = q^{-1}\lambda(k) + q\lambda(k)^{-1}$, ou encore (puisque μ et λ sont ℓ périodiques) si, et seulement si, $\exists k \in \mathbb{Z}$ tel que $R(\lambda(0), \mu(0), q) = q^{-1}\lambda(k) + q\lambda(k)^{-1}$.