X-ENS 2013

Mathématiques B

Un corrigé proposé par : AQALMOUN MOHAMED agrégé de mathématiques CPGE Khouribga

Première partie : Définition de l'exposant d'Hölder ponctuel

1. (a) La fonction nulle est un élément de $\Gamma^s(x_0)$, et si f,g sont deux éléments de $\Gamma^s(x_0)$ et

$$\begin{array}{l} \lambda \text{ un r\'eel , alors , pour tout } x \in [0,1] \backslash \{x_0\} \text{ on a l'in\'egalit\'e :} \\ \frac{|(f+\lambda g)(x)-(f+\lambda g)(x_0)|}{|x-x_0|^s} \leq \sup_{x \in [0,1] \backslash \{x_0\}} \frac{|f(x)-f(x_0)|}{|x-x_0|^s} + |\lambda| \sup_{x \in [0,1] \backslash \{x_0\}} \frac{|g(x)-g(x_0)|}{|x-x_0|^s}, \end{array}$$

$$\sup_{x \in [0,1] \setminus \{x_0\}} \frac{|(f+\lambda g)(x) - (f+\lambda g)(x_0)|}{|x-x_0|^s} < +\infty.$$

Il en résulte que $f + \lambda g$ est un élément de Γ^s .

Soient s_1 et s_2 deux réels tels que $0 \le s_1 \le s_2 < 1$, pour tout $x \in [0,1]$ on a $x-x_0 \in$]0,1] et la fonction $s\mapsto |x-x_0|^s$ est décroissante sur [0,1], donc $\frac{|f(x)-f(x_0)|}{|x-x_0|^{s_1}}\le$

 $\frac{|f(x)-f(x_0)|}{|x-x_0|^{s_2}}$, il en résulte que si $f \in \Gamma^{s_2}(x_0)$ alors f est aussi dans $\Gamma^{s_1}(x_0)$.

 $f \in \Gamma^0$ si, et seulement si, la fonction $x \mapsto f(x) - f(x_0)$ est bornée si, et seulement si, f est bornée; et comme tout élément de \mathcal{C} est borné, alors $\Gamma^0(x_0) = \mathcal{C}$.

- (b) Si $f \in \mathcal{C}$ est dérivable en x_0 , alors la fonction $x \mapsto \frac{f(x) f(x_0)}{x x_0}$ admet un prolongement par continuité en x_0 , ce prolongement est continue sur [0, 1] donc borné sur [0, 1], en particulier la fonction $x\mapsto \frac{f(x)-f(x_0)}{x-x_0}$ est borné sur $[0,1]\setminus\{x_0\}$, on en déduite alors l'existence d'une constante M telle que $\forall x\in[0,1],\,|f(x)-f(x_0)|\leq M|x-x_0|,$ considérons maintenant un réel $s \in [0,1]$, puisque $|x-x_0| \le 1$ alors on a $|x-x_0| \le 1$ $|x-x_0|^s$, d'où $\forall x \in [0,1]$; $|f(x)-f(x_0)| \leq M|x-x_0|^s$, et donc $f \in \Gamma^s$.
- (c) Pour $x_0 \in]0,1]$, on considère la fonction $f:[0,1] \to \mathbb{R}$ définie par $f(x)=|x-x_0|$, $f(x)=|x-x_0|$ n'est pas dérivable en x_0 , mais pour tout $s \in [0,1[$, la fonction $x \mapsto \frac{|f(x) - f(x_0)|}{|x - x_0|^s} =$ $|x-x_0|^{1-s}$ est borné sur $[0,1]\setminus\{x_0\}$, c'est-à-dire $f\in\Gamma^s(x_0), \forall s\in[0,1]$
- 2. $p(x) = 2|\frac{1}{2} x|^{\frac{1}{2}} \sqrt{|\frac{1}{2} + x|}$, pour $s \in [0, 1[$ et $x \neq x_0$, on a $\frac{|p(x) p(x_0)|}{|x \frac{1}{2}|^s} = 2|\frac{1}{2} x|^{\frac{1}{2} s} \sqrt{|\frac{1}{2} + x|}$, ainsi, la fonction $x \mapsto \frac{|p(x) p(x_0)|}{|x \frac{1}{2}|^s}$ est bornée si, et seulement si, $s \leq \frac{1}{2}$, on en déduit alors que $\{s \in [0,1[\ ,\ f \in \Gamma^s\} = [0,\frac{1}{2}],\ \text{et par suite}\}$ $\alpha_f(\frac{1}{2}) = \frac{1}{2}$.
- 3. (a) Soient $h, h' \in [0, 1]$ tels que $h \leq h'$. Notons $A_f(h) = \{|f(x) - f(y)|, x, y \in [0,1] \text{ et } |x - y| \leq h\}$ de même on définie $A_f(h')$, de sorte que $\omega_f(h) = \sup A_f(h)$; si $x, y \in [0, 1]$ tels que $|x - y| \le h$, alors $|x-y| \le h'$ et donc $|f(x)-f(y)| \in A_f(h')$, on a alors l'inclusion $A_f(h) \subset A_f(h')$, il vient alors que $\omega_f(h) \leq \omega_f(h')$. Continuité de ω_f en $0:\omega_f(0)=0$

f étant continue sur le compact [0,1], donc uniformément continue sur [0,1] (C'est le théorème de **Heine**).

Soit ε un réel strictement positif, il existe alors η strictement positif, tel que $\forall x, y \in [0,1]$ on ait $|f(x) - f(y)| \le \varepsilon$.

Soit $h \in [0,1]$ tel que $h \le \eta$, pour tout $x,y \in [0,1]$ tel que $|x-y| \le h$, on a aussi $|x-y| \le \eta$ donc $|f(x)-f(y)| \le \epsilon$, ainsi $\forall x,y \in [0,1]$ tels que $|x-y| \le h$, on a $|f(x)-f(y)| \le \epsilon$, il en résulte alors que $\omega_f(h) \le \epsilon$.

On en déduite que ω_f est continue en 0.

(b) Soient $h, h' \in [0, 1]$ tels que $h \leq h'$.

Soient $x,y \in [0,1]$ tels que $|x-y| \le h'$, on considère un réel $z \in [0,1]$ tel que $|x-z| \le h-h'$ et $|z-y| \le h$ (un tel réel existe puisque $[x-(h'-h),x+(h'-h)]\cap [y-h,y+h]\cap [0,1]$ est non vide).

Puisque $|f(x) - f(y)| \le |f(z) - f(y)| + |f(z) - f(x)|$, alors $|f(x) - f(y)| \le \omega_f(h) + \omega_f(h' - h)$, on a alors pour tout $x, y \in [0, 1]$, tels que $|x - y| \le h'$, $|f(x) - f(y)| \le \omega_f(h) + \omega_f(h' - h)$, un passage à la borne sup, donne $\omega_f(h') \le \omega(h) + \omega(h' - h)$.

Remarque: Si $0 \le h \le h' \le 1$, on a $\omega_f(h') - \omega_f(h) \le \omega_f(h'-h)$, ou encore, puisque ω_f croissante $|\omega_f(h') - \omega_f(h)| \le \omega_f(h'-h)$, et de même si $0 \le h \le h' \le 1$, on a $|\omega_f(h') - \omega(h)| \le \omega_f(h-h')$, de façon générale:

$$\forall h, h' \in [0, 1], |\omega_f(h') - \omega_f(h)| \le \omega_f(|h' - h|)$$

- (c) Soit $h \in [0,1]$, et $(h_n)_n$ une suite de nombres réels à valeurs dans [0,1], convergente de limite h, la suite $(|h-h_n|)_n$ est convergente de limite nulle, la fonction ω_f étant continue en 0, donc la suite $(\omega_f(|h_n-h|))_n$ tend vers 0, or $|\omega_f(h_n)-\omega_f(h)| \leq \omega_f(|h_n-h|)$ alors, la suite $(\omega_f(h_n))_n$ tend vers $\omega_f(h)$. Ce qui montre la continuité de ω_f en h, donc continue sur [0,1].
- 4. (a) Soit $s \in [0,1[$, par hypothèse, il existe $M \in \mathcal{R}$, tel que $\forall h \in]0,1[$, $\frac{\omega_f(h)}{h^s} \leq M$, Soit $x_0 \in [0,1]$ fixé. Pour $x \in [0,1] \setminus \{x_0\}$, on pose $h = |x-x_0| \leq 1$, on a alors $|x-x_0| \leq h$, donc $|f(x)-f(x_0)| \leq \omega_f(h) \leq Mh^s = M|x-x_0|^s$, d'où $\frac{|f(x)-f(x_0)|}{|x-x_0|^s} \leq M$. Ainsi $f \in \Gamma^s(x_0)$.
 - (b) Soit $x_0 \in [0,1]$:
 - Si $x_0 \neq 0$: p est alors dérivable en x_0 , et d'après la question 1.b, $\forall s \in [0, 1[p \in \Gamma^s(x_0)$ et par la suite $\alpha_p(x_0) = 1$.
 - Si $x_0 = 0$: Pour tout $s \in [0, 1[$, la fonction $x \mapsto \frac{|p(x)|}{|x|^s} = x^{1-s} \cos(\frac{\pi}{x})$ est bornée sur [0, 1], donc $\forall s \in [0, 1[$, $p \in \Gamma^s(0)$, d'où $\alpha_p(0) = 1$.

Pour montrer que $\frac{\omega_q(h)}{\sqrt{h}}$ ne tend pas vers 0, il suffit de démontrer l'existence d'une

suite $(x_n)_n$ à valeurs dans]0,1], qui tend vers 0 mais $\frac{\omega_q(x_n)}{\sqrt{x_n}}$ ne tend pas vers 0.

Pour $n \in \mathbb{N}^*$, soit $x_n = \frac{1}{n^2}$, bien sûr cette suite tend vers 0.

On
$$a \left| \frac{1}{n} - \frac{1}{n+1} \right| = \frac{n}{n(n+1)} \le \frac{1}{n^2}$$
, $donc \left| q(\frac{1}{n+1}) - q(\frac{1}{n}) \right| \le \omega_q(\frac{1}{n^2}) = \omega_q(x_n)$,

et d'autre part $|q(\frac{1}{n+1}) - q(\frac{1}{n})| = |\frac{(-1)^{n+1}}{n+1} + \frac{(-1)^{n+1}}{n}| = \frac{2n+1}{n(n+1)}$, il vient que

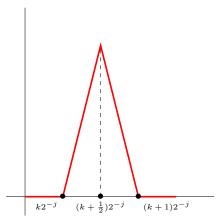
$$\frac{\omega_q(x_n)}{\sqrt{x_n}} \ge \frac{2n^2 + n}{n^2 + n} \ge 1, \text{ donc la suite } \frac{\omega_q(x_n)}{\sqrt{x_n}} \text{ ne tend pas vers } 0.$$

Deuxième partie : Le système de Schauder

Remarques: :

$$\theta_{j,k}(x) = \begin{cases} 0 & si \quad x \in [0,k2^{-j}], \\ 2^{j+1}x - 2k & si \quad x \in [k2^{-j},(k+\frac{1}{2})2^{-j}], \\ -2^{j+1}x + 2k - 1 & si \quad x \in [(k+\frac{1}{2})2^{-j},(k+1)2^{-j}], \\ 0 & si \quad x \in [(k+1)2^{-j},1]. \end{cases}$$

La courbe de $\theta_{i,k}$:



- Si I est un intervalle inclus dans le segment [0,1], alors la fonction $\theta_{j,k}$ est affine sur I si, et seulement si, les trois points "Pics" $k2^{-j}$, $(k+\frac{1}{2})2^{-j}$ et $(k+1)2^{-j}$, ne sont pas à l'intérieur de I. En effet :
 - Si ces trois points ne sont pas à l'intérieur de I, alors l'intervalle I est inclus dans l'un des quatre segments suivants $[0,k2^{-j}]$, $[k2^{-j},(k+\frac{1}{2})2^{-j}]$, $[(k+\frac{1}{2})2^{-j},(k+1)2^{-j}]$ ou $[(k+1)2^{-j},1]$ sur lesquels la fonction $\theta_{j,k}$ est affine.
- En pratique, pour démontrer que la fonction $\theta_{j,k}$ est affine sur le segment I, il suffit de démontrer que les trois points "Pics" ne sont pas à l'intérieur de I.

5. (a)

$$[k2^{-j-1},(k+1)2^{-j-1}] \quad \subset \quad [k'2^{-j},(k'+1)2^{-j}] \\ \Leftrightarrow \quad k'2^{-j} \leq k2^{-j-1} \leq (k+1)2^{-j-1} \leq (k'+1)2^{-j} \\ \Leftrightarrow \quad 2k' \leq k \leq k+1 \leq 2k'+2 \\ \Leftrightarrow \quad 2k' \leq k < 2k+2 \\ \Leftrightarrow \quad k' \leq \frac{k}{2} < k'+1 \\ \Leftrightarrow \quad k' = [\frac{k}{2}] \quad La \ partie \ entière \ de \ \frac{k}{2}$$

 $0 \le k < 2^{j+1}$, alors $k' \le \frac{k}{2} < 2^j$, c'est-à-dire $k' \in \mathcal{T}_j$.

(b) Soient $j \in \mathbb{N}$, $k \in \mathcal{T}_j$ et $\ell \in \mathcal{T}_{j+1}$. $k2^{-j} \le \ell 2^{-j-1} \le (k+1)2^{-j}$ si, et seulement si, $2k \le \ell \le 2(k+1)$ si, et seulement si, $k \in \{2k, 2k+1, 2k+2\}$, et on a :

$$\begin{array}{l} \theta_{j,k}(2k2^{-j-1})=1-|2k-2k-1|=0,\ \theta_{j,k}((2k+1)2^{-j-1})=1-|2k+1-2k+1|=1\\ \text{et}\ \theta_{j,k}((2k+2)2^{-j-1})=1-|2k+2-2k+1|=0,\ \text{on a alors}\ \theta_{j,k}(\ell2^{-j-1})=1\ \text{si}\ \ell=2k+1\ \text{et}\ 0\ \text{sinon}. \end{array}$$

(c) On a affaire aux deux points $k2^{-j}$ et $(k+1)2^{-j}$.

La fonction $\theta_{j,k}$ est continue sur $[0,1]\setminus\{k2^{-j},(k+1)2^{-j}\}$, et de plus $\sum_{x\to k2^{-j}}\theta_{j,k}(x)=$

$$\lim_{x \to (k+1)2^{-j}} \theta_{j,k}(x) = 0, \text{ alors } f \text{ est continue sur } [0,1].$$

D'après la remarque ci-dessus, il suffit de démontrer que les points $k2^{-j}$, $(k+\frac{1}{2})2^{-j}$ et $(k+1)2^{-j}$ ne sont pas à l'intérieure de l'intervalle $[\ell 2^{-n}, (\ell+1)2^{-n}]$.

Si $\ell 2^{-n} < k 2^{-j} < (\ell+1)2^{-n}$ alors $\ell < k 2^{n-j} < \ell+1$, mains n > j et donc $k 2^{n-j}$ est un entier qui est compris strictement entre deux entiers successifs, ce qui est alors impossible.

Si $\ell 2^{-n} < (k+\frac{1}{2})2^{-j} < (\ell+1)2^{-n}$, on obtient $2\ell < (2k+1)2^{n-j} < 2\ell+2$, puisque n-j>0, on alors un entier pair qui est compris strictement entre deux entiers pairs successifs, ce qui est aussi impossible.

Par la même façon, pour le troisième nombre.

(d) Soient $(j,k) \in \mathcal{I}$, et $(x,y) \in [0,1]^2$, pour simplifier on peut supposer que $x \leq y$;

Si $x, y \in [k2^{-j}, (k+1)2^{-j}]$: dans ce cas

$$|\overline{|\theta_{j,k}(x) - \theta_{j,k}(y)|} = |2^{j+1}x - 2k - 1| - |2^{j+1}y - 2k - 1|| \le 2^{j+1}|x - y|$$

Si $x, y \notin [k2^{-j}, (k+1)2^{-j}]$: les images sont nulles, donc l'inégalité est vérifiée.

$$Si \ x < k2^{-j} \ et \ y \in [k2^{-j}, (k+1)2^{-j}]; \ dans \ ce \ cas$$

 $|\theta_{j,k}(x) - \theta_y| = |1 - |2^{j+1}y - 2k - 1|| \le |2^{j+1}x - 2k|, \text{ par hypothèse on a } 0 \le 2^{j+1}x < 2k|$ et $2k \leq 2^{j+1}$, on obtient alors l'encadrement suivant : $0 \leq 2^{j+1}y - 2k \leq 2^{j+1}y - 2k$ $2^{j+1}x = 2^{j+1}|y-x|$, ce qui donne $|\theta_{j,k}(x) - \theta_{j,k}(y)| \le 2^{j+1}|y-|$.

Si $x \in [k2^{-j}, (k+1)2^{-j}]$ et $y \le (k+1)e^{-j}$: de même on obtient l'encadrement $0 \le 1$ $\overline{2^{j+1}x - 2k - 2 \le 2^{j+1}(y-x)} = 2^{j+1}|x-y|$, et d'autre part on a $|\theta_{j,k}(x) - \theta_{j,k}(y)| =$ $|1-|2^{j+1}x-2k-1|| \le |2^{j+1}x-2k-2|$, il en résulte que $|\theta_{j,k}(x)-\theta_{j,k}(y)| \le 2^{j+1}|x-y|$. On résume, pour tout $x, y \in [0, 1], |\theta_{i,k}(x) - \theta_{i,k}(y)| \le 2^{j+1}|x - y|$.

6. Encore, la continuité uniforme :

f continue sur le compact [0,1], donc uniformément continue.

Fixons un ε strictement positif, et soit η tel que, pour tout $x,y \in [0,1]$ tels que $|x-y| \leq \eta$ on ait $|f(x) - f(y)| < \varepsilon$.

Comme la suite $(2^{-j-1})_0$ tend vers 0, il existe alors $j_0 \in \mathbb{N}$, tel que pour tout $j \in \mathbb{N}$ avec $j \geq j_0$, on ait $2^{-j-1} \leq \eta$. Pour $j \geq j_0$ et $k \in \mathcal{T}_j$, on a:

 $\begin{aligned} |c_{j,k}(f)| &\leq \tfrac{1}{2} |f((k+\tfrac{1}{2})2^{-j}) - f(k2^{-j})| + \tfrac{1}{2} |f((k+1)2^{-j}) - f((k+\tfrac{1}{2})2^{-j})| \;, \; \text{et comme} \\ (k+\tfrac{1}{2})2^{-j} - k2^{-j} &= 2^{-j-1} \leq \eta \; \text{et} \; (k+1)2^{-j} - (k+\tfrac{1}{2})2^{-j} = 2^{-j-1} \leq \eta, \; \text{alors} \; |c_{k,j}(f)| \leq t \end{aligned}$ $\frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$, la dernière inégalité et valable, pour tout $k \in \mathcal{T}_j$, donc $\max_{k \in \mathcal{T}_j} |c_{j,k}(f)| \leq \varepsilon$.

Maintenant, on a, pour tout $j \geq j_0$, $\max_{k \in \mathcal{T}_i} |c_{j,k}(f)| \leq \varepsilon$, d'où; $\lim_{j \to \infty} \max_{k \in \mathcal{T}_i} |c_{j,k}(f)| = 0$.

- 7. (a) Calcul de $c_{j,k}(\theta_{i,\ell})$:
 - Cas : i < j :

D'après la question 5.c la fonction $\theta_{i,\ell}$ est affine sur l'intervalle $[k2^{-j}, (k+1)2^{-j}]$, par le calcul du taux de variation de $\theta_{i,\ell}$ qui est constant (dans cet intervalle), il vient

$$\theta_{i,\ell}((k+1)2^{-j}) - \theta_{i,\ell}((k+\frac{1}{2})^{-j}) = \theta_{i,\ell}((k+\frac{1}{2})2^{-j}) - \theta_{i,\ell}(k2^{-j}), \text{ ce qui donne}$$

$$\theta_{i,\ell}((k+\frac{1}{2}))2^{-j} - \frac{\theta_{i,\ell}(k2^{-j}) + \theta_{i,\ell}((k+1)2^{-j})}{2} = 0, \text{ dans ce cas } c_{j,k}(\theta_{i,\ell}) = 0.$$

Les deux nombres $k2^{-j}$, $(k+\frac{1}{2})2^{-j}$ et $(k+1)2^{-j}$ ne sont pas à l'intérieur de l'intervalle $[\ell 2^{-i}, (\ell+1)2^{-i}]$: en fait si $\ell 2^{-i} < (k+\varepsilon)2^{-j} < (\ell+1)2^{-i}$ avec $\varepsilon = 0$ ou $\frac{1}{2}$ ou 1, alors $\ell < (k+\varepsilon)2^{i-j} < \ell+1$ et comme $(k+\varepsilon)2^{i-j}$ est un entier dans les deux cas $(\varepsilon=0)$ ou 1) ces inégalités sont impossibles, dans le cas $\varepsilon = \frac{1}{2}$, on a $2\ell < (2k+1)2^{i-j} < 2\ell + 2$,

mais $i - j \ge 1$, donc $(2k + 1)2^{i-j}$ est un entier pair compris strictement entre deux entiers pairs successifs, ce qui est encore impossible.

En on déduit alors que l'intervalle, $[\ell 2^{-i}, (\ell+1)2^{-i}]$ est inclus dans l'un des intervalles $[0, k2^{-j}]$, $[k2^{-j}, (k+\frac{1}{2})2^{-j}]$, $[(k+\frac{1}{2})2^{-j}, (k+1)2^{-j}]$ ou $[(k+1)2^{-j}, 1]$, dans les quatre cas la fonction $\theta_{i,\ell}$ est nulle en $k2^{-j}$, $(k+\frac{1}{2})2^{-j}$ et $(k+1)2^{-j}$, il en résulte alors que $c_{j,k}(\theta_{i,\ell})=0$.

• $Cas \ i = j$:

Si $k \neq \ell$, alors l'intersection des deux intervalle $[\ell 2^{-i}, (\ell+1)2^{-i}]$ et $[k2^{-i}, (k+1)2^{-i}]$ est vide ou réduit à l'une extrémité du premier intervalle, ainsi la fonction $\theta_{i,\ell}$ est nulle sur l'intervalle $[k2^{-i}, (k+1)2^{-j}]$, on en déduit alors que $c_{j,k}(\theta_{i,\ell}) = 0$ Si k = l, $c_{j,k}(\theta_{j,k}) = \theta_{j,k}((k+\frac{1}{2})2^{-j}) = 1$.

Si k = l, $c_{j,k}(\theta_{j,k}) = \theta_{j,k}((k + \frac{1}{2})2^{-j}) = 1$ Conclusion:

$$c_{j,k}(\theta_{i,\ell}) = \delta_{(j,k),(i,\ell)}$$

(b) La covergence uniforme de la série $\sum f_i^a$ sur le segment [0,1];

Pour $j \in \mathbb{N}$, et $x \in [0,1]$, $k \in \mathcal{T}_j$ si $k \neq \tilde{k}_j(x)$, on a $\theta_{j,k}(x) = 0$, donc $f_j^a(x) = \theta_{j,\tilde{k}_j(x)}(x)$, on obtient la majoration suivante $|f_j^a(x)| \leq \max_{k \in \mathcal{T}_j} |a_{j,k}| = b_j$, ou encore $||f_j^a||_{\infty} \leq b_j$, puisque la série $\sum b_j$ converge ,alors la série $\sum f_j^a$ converge normalement, donc uni-

puisque la serie $\sum b_j$ converge ,alors la serie $\sum f_j^z$ converge normalement, donc ur formément sur [0,1].

Pour tout $j \in \mathbb{N}$, on a $f_j^a(0) = f_j^a(1) = 0$, la convergence simple de la série $\sum f_j^a$ implique que $f^a(0) = f^a(1) = 0$, de plus la convergence uniforme assure que la fonction f^a est continue, il en résulte alors que f^a est un élément de \mathcal{C}_0 .

Soit $(j_0, k_0) \in \mathcal{I}$, L'application $c_{j_0, k_0} : \mathcal{C}_0 \to \mathbb{R}$ est continue $(|c_{j_0, k_0}(f)| \leq 2||f||_{\infty})$,

alors $c_{j_0,k_0}(f^a) = \sum_{j=0}^{\infty} \sum_{k \in \mathcal{T}_j} a_{j,k} c_{j_0,k_0}(\theta_{j,k}) = \sum_{j=0}^{\infty} \sum_{k \in \mathcal{T}_j} a_{j,k} \delta_{(j_0,k_0),(j,k)}$, dans cette somme

un seul terme qui peut être non nul , le terme correspondant à l'indice (j_0,k_0) , on obtient alors $c_{j_0,k_0}(f^a)=a_{j_0,k_0}$.

8. (a) On suppose que f est de classe C^1 .

f' étant continue sur [0,1], donc bornée, il existe alors une constante $\alpha \in \mathbb{R}$, telle que $||f'|| \leq \alpha$.

Par le théorème des accroissements finis, ils existe deux constantes a et b dans [0,1] telles :

 $f((k+\frac{1}{2})2^{-j}) - f(k2^{-j}) = 2^{-j}f'(a)$ et

 $f((k+1)2^{-j}) - f((k+\frac{1}{2})2^{-j}) = 2^{-j}f'(b)$, et donc par une majoration de chaque terme on obtient :

 $|c_{j,k}(f)| \le \alpha 2^{-j}.$

Pour tout $j \in \mathbb{N}$, $\max_{k \in \mathcal{T}_j} |c_{j,k}(f)| \leq \alpha 2^{-j}$, et puisque la série $\sum \alpha 2^{-j}$ est convergente, donc d'après la question 7.b, la suite de fonctions $S_n f$ converge uniformément sur [0,1].

(b) On suppose que f est de classe C^2 .

f'' est bornée sur [0,1], notons $\beta = ||f''||_{\infty}$.

Comme à la question précédente, ils existent a et b dans l'intervalle $[k2^{-j}, (k+1)2^{-j}]$, tels que :

 $f((k+\frac{1}{2})2^{-j}) - f(k2^{-j}) = 2^{-j}f'(a)$ et $f((k+1)2^{-j}) - f((k+\frac{1}{2})2^{-j}) = 2^{-j}f'(b)$ et demême il existe c entre a et b tel que

$$c_{j,k}(f) = \frac{1}{2}2^{-j}(a-b)f''(c)$$
, et puisque $|a-b| \le 2^{-j}$, alors $|c_{j,k}(f)| \le (\frac{1}{2}\beta)4^{-j}$.

- 9. (a) Pour $j \leq n < n+1$, et $k \in \mathcal{T}_j$, la fonction $\theta_{j,k}$ est affine sur $[\ell 2^{-n-1}, (\ell+1)2^{-n-1}]$ où $\ell \in \mathcal{T}_{n+1}$, et puisque $S_n f$ est une combinaison des fonctions $\theta_{j,k}$ avec j < n+1 et $k \in \mathcal{T}_j$, alors $S_n f$ est affine sur l'intervalle $[\ell 2^{-n-1}, (\ell+1)2^{-n-1}]$.
 - (b) Soit $\ell \in \mathcal{T}_{n+1}$;

Cas
$$\ell = 2\ell'$$
 pair, dans ce cas $\ell' \in \mathcal{T}_n$.

Cas
$$\ell = 2\ell'$$
 pair, dans ce cas $\ell' \in \mathcal{T}_n$.
 $S_n f(\ell 2^{-n-1}) = S_n f(\ell' 2^{-n}) = \sum_{k \in \mathcal{T}_n} c_{n,k}(f) \theta_{n,k}(\ell' 2^{-n}) + S_{n-1} f(\ell' 2^{-n})$, par hypothèse

de récurrence $S_{n-1}f(\ell 2^{-n}) = f(\ell' 2^{-n}) = f(\ell 2^{-n-1})$, et d'autre par les fonctions $\theta_{n,k}$ avec $k \in \mathcal{T}_n$ s'annule en $\ell'2^{-n}$, alors $S_n f(\ell 2^{-n-1}) = f(\ell 2^{-n-1})$.

Cas $\ell = 2\ell' + 1$ impair, dans ce cas on a $\ell' \in \mathcal{T}_n$.

De même on a
$$S_n f(\ell 2^{-n-1}) = \sum_{k \in \mathcal{T}_n} c_{n,k}(f) \theta_{n,k} ((\ell' + \frac{1}{2})2^{-n}) + S_{n-1} f((\ell' + \frac{1}{2})2^{-n}).$$

Lorsque $k \neq \ell'$, alors $\theta_{n,k}((\ell' + \frac{1}{2})2^{-n}) = 0$, et donc

$$\sum_{k \in \mathcal{T}_n} c_{n,k}(f)\theta_{n,k}((\ell' + \frac{1}{2})2^{-n}) = c_{n,\ell'}(f)\theta_{n,\ell'}((\ell' + \frac{1}{2})2^{-n}) = c_{n,\ell'}(f).$$

Puisque la fonction $S_{n-1}f$ est affine sur le segment $[\ell'2^{-n}, (\ell'+1)2^{-n}]$, alors

$$S_{n-1}f((\ell'+\frac{1}{2})2^{-n}) = \frac{S_{n-1}(\ell'2^{-n}) + S_{n-1}f((\ell'+1)2^{-n})}{2} = \frac{f(\ell'2^{-n}) + f((\ell'+1)2^{-n})}{2} :$$
En effet, si g est affine sur le segment [a, b], alors $\forall x \in [a, b]$; $g(x) = \frac{f(b) - f(a)}{b - a}(x - a) + f(a)$

et en particulier $g(\frac{a+b}{2}) = \frac{g(a)+g(b)}{2}$.

Il en résulte;

$$S_n f(\ell 2^{-n-1}) = c_{n,\ell'}(f) + \frac{f(\ell' 2^{-n}) + f((\ell' + 1)2^{-n})}{2} = f((\ell' + \frac{1}{2})2^{-n}) = f(\ell 2^{-n-1}).$$

(c) La récurrence aux yeux!..., il faut la démarrer (bien sur pour n = 0).

D'abord; $S_0 f = c_{0,0}(f)\theta_{0,0}$

Soit $\ell \in \mathcal{T}_1$, $(\ell = 0 \text{ ou } \ell = 1)$, un calcul donne :

$$S_0f(0) = 0 = f(0)$$
 et $S_0f(\frac{1}{2}) = f(\frac{1}{2})\theta_{0,0}(\frac{1}{2}) = f(\frac{1}{2})$.

10. (a) Soit $n \in \mathbb{N}$, et $x \in [0,1]$, remarquons que $[0,1] = \bigcup_{k=0}^{\infty} [k2^{-n-1},(k+1)2^{-n-1}]$, donc

il existe k avec $0 \le k < 2^{n+1}$, tel que $x \in [k2^{-n-1}, (k+1)2^{-n-1}]$, et comme $S_n f$ est affine sur $[k2^{-n-1}, (k+1)2^{-n-1}]$, alors

$$|S_n f(x) - S_n f(k2^{-n-1})| \leq |S_n f(k2^{-n-1}) - S_n f((k+1)2^{-n-1})|$$

$$\leq |f(k2^{-n-1}) - f((k+1)2^{-n-1})|$$

$$\leq \omega_f(2^{-n-1})$$

 $(S_n f(x) \text{ est compris entre les deux valeurs } S_n f(k2^{-n-1}) \text{ et } S_n f((k+1)2^{-n-1}))$

Et d'autre part $|x-k2^{-n-1}| \le 2^{-n-1}$, donne $|f(x)-f(k2^{-n-1})| \le \omega_f(2^{-n-1})$, on en déduit alors que

 $|f(x) - S_n f(x)| \le |f(x) - f(k2^{-n-1})| + |S_n(k2^{-n-1}) - S_n f(x)| \le 2\omega_f(2^{-n-1}), il \ vient$ alors que $||f - S_n f||_{\infty} \le 2\omega_f(2^{-n-1})$, et puisque ω_f est continue en 0 et $\omega_f(0) = 0$, alors $\lim_{n \to +\infty} ||f - S_n f||_{\infty} = 0.$

 $S_n f(x)$ est compris entre les deux valeurs $S_n f(k2^{-n-1}) = f(k2^{-n-v})$ et

 $S_n f((k+1)2^{-n-1}) = f((k+1)2^{-n-1}), donc$

 $|S_n f(x)| \le \max(|f(k2^{-n-1})|, |f((k+1)2^{-n-1})|) \le ||f||_{\infty}, \text{ et par la suite } ||S_n f||_{\infty} \le ||f||_{\infty}$ $||f||_{\infty}$.

Pour $k \in \mathcal{T}_n$, on a $S_n \theta_{n,k} = \theta_{n,k}$, donc la norme subordonnée (à $\|.\|_{\infty}$) de S_n est égal

(b) Soient $n \in \mathbb{N}$, et $f \in \mathcal{C}_0$. Rappelons ici que $c_{i,\ell}(\theta_{j,k}) = 1$ si $(i,\ell) = (j,k)$ et 0 sinon, et que les applications $c_{i,l}$ sont linéaires.

$$S_n(S_n f) = S_n(\sum_{j=0}^n \sum_{k \in \mathcal{T}_j} c_{j,k}(f)\theta_{j,k})$$

$$= \sum_{i=0}^n \sum_{\ell \in \mathcal{T}_i} c_{i,\ell}(\sum_{j=0}^n \sum_{k \in \mathcal{T}_j} c_{j,k}(f)\theta_{j,k})\theta_{i,\ell}$$

$$= \sum_{i=0}^n \sum_{\ell \in \mathcal{T}_i} \sum_{j=0}^n \sum_{k \in \mathcal{T}_j} c_{j,k}(f)c_{i,\ell}(\theta_{j,k})\theta_{i,\ell}$$

$$= \sum_{i=0}^n \sum_{\ell \in \mathcal{T}_i} c_{i,\ell}(f)\theta_{i,\ell}$$

$$= S_n f$$

- 11. (a) La fonction $x \mapsto x^s$ est concave sur \mathbb{R}_+ , pour tous $a, b \ge 0$, on a $\frac{a^s}{2} + \frac{b^s}{2} \le (\frac{a+b}{2})^s$, et donc $a^s + b^s \le 2^{1-s}(a+b)^s$.
 - (b) Soit $f \in \mathcal{C}_0 \cap \Gamma^s$, Il existe alors $M \in \mathbb{R}_+$, tel que $\forall x \in [0,1]$, $|f(x) - f(x_0)| \leq M|x - x_0|^s$. $c_{j,k}(f) = f((k + \frac{1}{2})2^{-j}) - f(x_0) - \frac{1}{2}((f(k2^{-j}) - f(x_0)) + (f((k+1)2^{-j}) - f(x_0)))$. Pour obtenir l'inégalité demandée, on commence par majorer chaque terme :

$$|f((k+\frac{1}{2})2^{-j}) - f(x_0)| \leq M|(k+\frac{1}{2})2^{-j} - x_0|^s$$

$$\leq M(\frac{1}{2}2^{-j} + |k2^{-j} - x_0|)^s$$

$$\leq M(2^{-j} + |k2^{-j} - x_0|)^s$$

$$|(f(k2^{-j}) - f(x_0)) + (f((k+1)2^{-j}) - f(x_0))| \le M(|k2^{-j} - x_0|^s + |(k+1)2^{-j} - x_0|^s)$$

$$\le M2^{1-s}(|k2^{-j} - x_0| + |(k+1)2^{-j} - x_0|)^s$$

La dernière inégalité est obtenue par la question précédente. Mais $|(k+1)2^{-j} - x_0| \le 2^{-j} + |k2^{-j} - x_0| \le 2 \cdot 2^{-j} + |k2^{-j} - x_0|$ et on obtient :

$$|(f(k2^{-j}) - f(x_0)) + (f((k+1)2^{-j}) - f(x_0))| \le M2^{1-s}(2 \cdot 2^{-j} + 2|k2^{-j} - x_0|)^s$$

$$\le 2M(2^{-j} + |k2^{-j} - x_0|)^s$$

On a alors la majoration suivante : $|c_{j,k}(f)| \le 2M(2^{-j} + |k2^{-j} - x_0|)^s$.

Troisième partie : Minoration de l'exposant de Hölder ponctuel

12. Pour $x \neq x_0$ on $a: 2^{-n_0-1} < |x-x_0| \le 2^{n_0}$ si, et seulement si, $n_0 \le \log_2(|x-x_0|) < n_0+1$ si, et seulement si, n_0 est la partie entière de $\log_2(|x-x_0|)$, ceci donne l'existence et l'unicité de n_0 .

- 13. Rappelons que si $x \in [0,1]$, et $(j,k) \in \mathcal{I}$; si $k \neq \tilde{k}_j(x)$, alors $\theta_{j,k}(x) = 0$. Pour $x \in [0,1]$, et $k \in \mathcal{T}_j$; si k est différent de $\tilde{k}_j(x)$ et $\tilde{k}_j(x_0)$, alors $\theta_{j,k}(x) = \theta_{j,k}(x_0) = 0$, il vient alors que : $W_j = |c_{j,\tilde{k}_j(x)}(f)||\theta_{j,\tilde{k}_j(x)}(x) - \theta_{j,\tilde{k}_j(x)}(x_0)| + |c_{j,\tilde{k}_j(x_0)}||\theta_{j,\tilde{k}_j(x)}(x_0) - \theta_{j,\tilde{k}_j(x_0)}(x_0)|$ et par l'inégalité de la question 5.d, on obtient le résultat.
- 14. (a) Il suffit de majorer les coefficients qui intervient dans l'inégalité de la question précédente : $|c_{j,\tilde{k}_{j}(x_{0})}(f)| \leq c_{1}(2^{-j} + |\tilde{k}_{j}(x_{0})2^{-j} x_{0}|)^{s} \text{ et comme } |\tilde{k}_{j}(x_{0})2^{-j} x_{0}| \leq 2^{-j} \text{ alors}$

$$\begin{aligned} |c_{j,\tilde{k}_{j}(x_{0})}| &\leq c_{1}(2^{-j}+2^{-j})^{s} = c_{1}2^{s}2^{-js} \leq c_{1}3^{s}2^{-js}, \text{ on aussi} \\ |c_{j,\tilde{k}_{j}(x_{0})}| &\leq c_{1}(2^{-j}+|\tilde{k}_{j}(x)2^{-j}-x_{0}|)^{s} \text{ et puisque} \\ |\tilde{k}_{j}(x)2^{-j}-x_{0}| &\leq |\tilde{k}_{j}(x)2^{-j}-x|+|x-x_{0}| \leq 2^{-j}+2^{-n_{0}} \leq 2.2^{-j}, \text{ donc} \\ (2^{-j}+|\tilde{k}_{j}(x)2^{-j}-x_{0}|)^{s} &\leq 3^{s}2^{-sj}, \text{ puis} \end{aligned}$$

$$(2^{-j} + |\tilde{k}_j(x)2^{-j} - x_0|)^s \le 3^s 2^{-sj}, \text{ puis } :$$

$$W_j \le c_1 2 \cdot 2^{-sj} 3^s 2^{j+1} |x - x_0| = 4c_1 3^s 2^{(1-s)j} |x - x_0|.$$

(b) $\sum_{j=0}^{n_0} W_j \le 4c_1 3^s |x-x_0| \sum_{j=0}^{n_0} 2^{(1-s)j}$ d'autre part :

$$\sum_{j=0}^{n_0} 2^{(1-s)j} = (2^{1-s} - 1)^{-1} (2^{(1-s)(n_0+1)} - 1) \le (2^{1-s} - 1)^{-1} 2^{(1-s)(n_0+1)}$$

$$\le 2 \cdot 2^{-s} (2^{1-s})^{-1} (2^{-n_0})^{s-1}$$

$$\le 2 \cdot 2^{-s} (2^{1-s} - 1)^{-1} |x - x_0|^{s-1}$$

Donc
$$\sum_{j=0}^{n_0} W_j \le 8c_1(2^{1-s}-1)^{-1}(3/2)^2|x-x_0|^s$$
.

15. pour $j \in \mathbb{N}$, on a :

$$\begin{aligned} &|c_{j,\tilde{k}_{j}(x_{0})}(f)| \leq c_{1}(2^{-j} + |\tilde{k}_{j}(x_{0}) - x_{0}|)^{s} \leq c_{1}(2^{-j} + 2^{-j})^{s} = c_{1}2^{s(1-j)} \\ &\sum_{j=n_{0}+1}^{+\infty} \sum_{k \in \mathcal{T}_{j}} |c_{j,k}(f)| |\theta_{j,k}(x_{0})| = \sum_{j=n_{0}+1}^{+\infty} |c_{j,\tilde{k}_{j}(x_{0})}(f)| |\theta_{j,\tilde{k}_{j}(x_{0})}(x_{0})|, \text{ les fonctions } \theta_{j,\tilde{k}_{j}(x_{0})} \text{ sont } \\ &\text{majorées par 1, donc} \end{aligned}$$

$$\sum_{j=n_0+1}^{+\infty} |c_{j,\tilde{k}_j(x_0)}(f)| |\theta_{j,\tilde{k}_j(x_0)}(x_0)| \leq c_1 \sum_{j=n_0+1} 2^{s(1-j)}$$

$$\leq c_1 2^s 2^{(-n_0-1)s} \sum_{j=0}^{+\infty} 2^{-sj}$$

$$\leq c_1 2^s |x-x_0|^s (1-2^{-s})^{-1}$$

16. Montrons d'abord que $\omega_f(1) \geq 1$, en effet :

f étant continue sur le segment [0,1], donc il existe $c \in [0,1]$ tel que $||f||_{\infty} = |f(c)| = 1$, de plus $|c-0| \le 1$, donc $1 = |f(c)| = |f(c) - f(0)| \le \omega_f(1)$.

De ce qui précéde 2^{-n_0s} est compris entre $0=\omega_f(0)$ et $\omega_f(1)$, par le théorème des valeurs intermédiaires, il exsiste $\alpha\in[0,1]$ tel que $2^{-n_0s}=\omega_f(\alpha)$, considérons maintenant n' la partie entière de $\log_2\alpha$, par la monotonie de ω_f , on obtient $\omega_f(2^{-n'-1})\leq 2^{-n_0s}\leq \omega_f(2^{-n'})$, mais la première inégalité n'est pas stricte, pour régler ce problème; considérons $A=\{n\in\mathbb{N}\ ,\ 2^{-n_0s}\leq\omega_f(2^{-n})\}$, c'est une partie de \mathbb{N} , non vide (il contient n'), si cette partie n'est aps majorée, alors on peut trouver une suite d'entiers $\varphi(n)$ strictement croissante telle que $\forall n\in\mathbb{N},\ \varphi(n)\in A,\ c'est-à-dire\ \forall n\in\mathbb{N},\ 2^{-sn_0}\leq\omega_f(2^{-\varphi(n)})$, mais comme la fonction ω_f est continue en 0 et $\omega_f(0)=0$, en passant à la limite on obtient

 $2^{-n_0s} \leq 0$ (ce qui est impossible).

La partie A est alors majorée , donc admet un plus grand élément n_1 ; $n_1 \in A$ donne $2^{-n_0s} \le \omega_f(2^{-n_1})$ et $n_1 + 1 \notin A$ donne $\omega_f(2^{-n_1-1}) < 2^{-n_0s}$.

Pour l'unicité supposons l'existence d'un autre entier n_2 tel que $n_2 \neq n_1$, par définition de A l'entier n_2 est un élément de A donc $n_2 < n_1$, on a aussi $n_2 + 1 \le n_1$, donc $\omega_f(2^{-n_2-1}) < 2^{-n_0s} \le \omega_f(2^{-n_1}) \le \omega_f(2^{-n_2-1})$, et on a alors une contradiction.

17. Soient $t \in [0,]$ et $k \in \mathcal{T}_{n+1}$ tel que $t \in [k2^{-n-1}, (k+1)2^{-n-1}]$

$$f(t) - S_n f(t) = \left(f(t) - S_n f(k2^{-n-1}) \right) + \left(S_n f(k2^{-n-1}) - S_n f(t) \right)$$

Et comme la fonction $S_n f$ est affine sur le segment $[k2^{-n-1}, (k+1)2^{-n-1}]$ alors elle est monotone sur cet segment, donc $S_n f(t)$ est compris entre les deux valeurs $S_n f(k2^{-n-1})$ et $S_n f((k+1)2^{-n-1})$ on en déduit alors que

$$\begin{split} |S_nf(t)-S_nf(k2^{-n-1}) &\leq |S_nf(k2^{-n-1})-f(k2^{-n-1})|, \ donc \\ |f(t)-S_nf(t)| &\leq |f(t)-f(k2^{-n-1})|+|f(k2^{-n-1})-f((k+1)2^{-n-1})| \ et \ puisque \\ |t-k2^{-n-1}| &\leq 2^{-n-1} \leq 2^{-n_1-1} \ et \ |(k+1)2^{-n-1}-k2^{-n-1}| \leq 2^{-n-1} \leq 2^{-n_1-1} \\ alors \ |f(t)-f(k2^{-n-1})| &\leq \omega_f(2^{-n_1-1}) \leq 2^{-n_0s} \ et \\ |f((k+1)2^{-n-1})-f(k2^{-n-1})| &\leq \omega_f(2^{-n_1-1}) \leq 2^{-n_0s} \ , \ on \ obtient \ alors \\ |f(t)-S_nf(t)| &\leq 2.2^{-n_0s} = 2^{s+1}2^{(-n_0-1)s} \leq 2^{s+1}|x-x_0|, \ et \ c'est \ bien \ que \\ ||f-S_nf||_{\infty} &\leq 2^{s+1}|x-x_0|^s. \end{split}$$

18. (a) Pour j entre $n_0 + 1$ et n_1 , on a

Comme à la question 15, $|c_{i,\tilde{k}_i(x)}(f)| \leq c_1 3^s |x - x_0|^s$, donc

$$\sum_{j=n_0+1}^{n_1} \sum_{k \in \mathcal{T}_i} |c_{j,k}(f)| |\theta_{j,k}(x)| = \sum_{j=n_0+1}^{n_1} |c_{j,\tilde{k}_j(x)}(f)| |\theta_{j,\tilde{k}_j(x)}(x)| \le c_1 3^s (n_1 - n_0) |x - x_0|^s.$$

(b) On a $\omega_f(2^{-n_1}) \le c_4(N)(1+|\log_2(2^{-n_1})|)^{-N} = c_4(N)(1+n_1)^{-N}$ et par suite $(1+n_1)^N \le \frac{c_4(N)}{\omega_f(2^{-n_1})}$ d'où :

$$n_1 - n_0 \le n_1 + 1 \le \left(\frac{c_4(N)}{\omega_f(2^{-n_1})}\right)^{\frac{1}{N}}.$$

Par définition de n_1 on a $\frac{1}{\omega_f(2^{-n_1})} \le 2^{n_0 s}$ et donc $n_1 + 1 \le (c_4(N))^{\frac{1}{N}} 2^{\frac{n_0 s}{N}}$ or $2^{n_0 s} \le 1$

 $|x-x_0|^{-s}$, alors $(n-n_0)|x-x_0|^s \leq (c_4(N))^{\frac{1}{N}}|x-x_0|^{(1-\frac{1}{N})s}$, on utilise la majoration de la question 18.a on obtient le résultat.

19. On fixe un entier $N \in \mathbb{N}$.

Cas $n_0 < n_1$:

Pour tout $t \in [0,1]$, $f(t) = S_{n_0}f(t) + (S_{n_1}f(t) - S_{n_0}f(t)) + (f(t) - S_{n_1}f(t))$. Nous allors majorer chaque terme:

$$|S_{n_0}(x) - S_{n_0}(x_0)| \le \sum_{j=0}^{n_0} W_j \le c_2 |x - x_0|^s \le c_2 |x - x_0|^{(1 - \frac{1}{N})s}.$$

$$\begin{aligned} |(S_{n_1}f(x) - S_{n_0}f(x))| &- (S_{n_1}f(x_0) - S_{n_0}f(x_0))| \\ &\leq \sum_{j=n_0+1}^{n_1} \sum_{k \in \mathcal{T}_j} |c_{j,k}(x)| |\theta_{j,k}(x)| + \sum_{j=n_0+1}^{n_1} \sum_{k \in \mathcal{T}_j} |c_{j,k}(f)| |\theta_{j,k}(x_0)| \\ &\leq \sum_{j=n_0+1}^{n_1} \sum_{k \in \mathcal{T}_j} |c_{j,k}(x)| |\theta_{j,k}(x)| + \sum_{j=n_0+1}^{+\infty} \sum_{k \in \mathcal{T}_j} |c_{j,k}(f)| |\theta_{j,k}(x_0)| \\ &\leq c_5(N) |x - x_0|^{(1 - \frac{1}{N})s} + c_3|x - x_0|^S \\ &\leq (c_5(N) + c_3) |x - x_0|^{(1 - \frac{1}{N})s}. \end{aligned}$$

$$|(f(x) - S_{n_1}f(x)) - (f(x_0) - S_{n_1}f(x_0))| \leq 2||f - S_{n_1}f||_{\infty}$$

$$\leq 2^{s+2}|x - x_0|^s$$

$$\leq 2^{s+2}|x - x_0|^{(1-\frac{1}{N})s}$$

Si on pose $M_1(N) = \max(c_2, c_5(N) + c_3, 2^{2+s})$, alors dans ce cas;

$$|f(x) - f(x_0)| \le M_1(N)|x - x_0|^{(1 - \frac{1}{N})s}$$

Cas $n_0 \ge n_1$:

Pour tout $t \in [0,1]$ on a $f(t) = f(t) - S_{n_0}f(t) + S_{n_0}f(t)$ et on a les majorations suivantes :

$$|S_{n_0}f(x) - S_{n_0}f(x_0)| \le c_2|x - x_0|^s \le c_2||^{(1-\frac{1}{N})s}$$
 et puisque $n_0 \ge n_1$ alors

$$|(f(x) - S_{n_0}f(x)) - (f(x_0) - S_{n_0}f(x_0))| \leq 2||f - S_{n_0}f||_{\infty}$$

$$\leq 2^{2+s}|x - x_0|^s$$

$$\leq 2^{s+2}|x - x_0|^{(1-\frac{1}{N})s}$$

Si on pose $M_2 = \max(2^{s+2}, c_2)$, alors dans ce cas on a :

$$|f(x) - f(x_0)| \le M_2 |x - x_0|^{(1 - \frac{1}{N})s}$$

Posons maintenant $M = \max(M_1(N), M_2)$, puisque N ne dépend pas x, alors $\forall x \in [0, 1]$, $|f(x) - f(x_0)| \le M|x - x_0|^{(1 - \frac{1}{N})s}$, on en déduit alors que pour tout $N \in \mathbb{N}^*$, $f \in \Gamma^{(1 - \frac{1}{N})s}$, en particulier , pour tout $N \in \mathbb{N}^*$, $\alpha_f(x_0) \ge (1 - \frac{1}{N})s$, par un passage à la limite quand N tend vers $+\infty$, il vent que $\alpha_f(x_0) \ge s$.

