e3a PSI A (3 heures) un corrigé

Questions préliminaires d'application directe du cours.

Q.1. a. L'ensemble des racines n-ièmes de l'unité est

$$U_n = \{\omega^k / \ 0 \le k \le n - 1\}$$

b. On a

$$X^{n} - 1 = \prod_{k=0}^{n-1} (X - \omega^{k})$$

c. La somme proposée est géométrique de raison ω^r . Il y a donc deux cas.

$$\forall r \in n\mathbb{Z}, \ \sum_{k=0}^{n-1} \omega^{rk} = \sum_{k=0}^{n-1} 1 = n$$

$$\forall r \notin n\mathbb{Z}, \ \sum_{k=0}^{n-1} \omega^{rk} = \frac{1-\omega^{rn}}{1-\omega^r} = 0$$

Q.2. L'hypothèse sur M se traduit par l'existence de $Q \in GL_n(\mathbb{C})$ telle que

$$Q^{-1}MQ = \operatorname{diag}(\lambda_0, \dots, \lambda_{n-1})$$

a. Le déterminant étant un invariant de similitude (ce que l'on peut voir comme une conséquence de det(AB) = det(A) det(B) et de $det(I_n) = 1$, par exemple) on a

$$\det(M) = \det(\operatorname{diag}(\lambda_0, \dots, \lambda_{n-1})) = \prod_{k=0}^{n-1} \lambda_k$$

- **b.** On peut procéder par récurrence sur ℓ .
 - <u>Initialisation</u> : $M^0V = I_nV = V = \lambda^0V$ montre que le résultat est vrai pour $\ell = 0$.
 - <u>Hérédité</u> : soit $\ell \geq 1$ tel que le résultat est vrai jusqu'au rang $\ell 1.$ On a alors

$$M^{\ell}V = M(M^{\ell-1}V) = M(\lambda^{\ell-1}V) = \lambda^{\ell-1}(MV) = \lambda^{\ell}V$$

et le résultat reste vrai au rang ℓ .

Finalement, on a montré que

$$\forall \ell \in \mathbb{N}. \ M^{\ell}V = \lambda^{\ell}V$$

et comme V est non nul, c'est un vecteur propre pour M^{ℓ} associé à λ^{ℓ} .

c. On montre par récurrence que

$$\forall k \in \mathbb{N}, \ Q^{-1}M^kQ = \operatorname{diag}(\lambda_0^k, \dots, \lambda_{n-1}^k)$$

- <u>Initialisation</u>: c'est immédiatement vrai au rang 0 car $Q^{-1}M^0Q = Q^{-1}Q = I_n$.
- <u>Hérédité</u>: soit $k \ge 1$ tel que le résultat est vrai jusqu'au rang k-1. On a alors

$$Q^{-1}M^{k}Q = Q^{-1}M^{k-1}QQ^{-1}MQ = \operatorname{diag}(\lambda_0^{k-1}, \dots, \lambda_{n-1}^{k-1})\operatorname{diag}(\lambda_0, \dots, \lambda_{n-1})$$
$$= \operatorname{diag}(\lambda_0^{k}, \dots, \lambda_{n-1}^{k})$$

et le résultat reste vrai au rang k.

En combinant linéairement ces relations, on obtient que

$$\forall p \in \mathbb{C}[X], \ Q^{-1}p(M)Q = \operatorname{diag}(p(\lambda_0), \dots, p(\lambda_{n-1}))$$

ce qui montre que p(X) est diagonalisable et que ses valeurs propres sont les $p(\lambda_k)$.

d. La question précédente et la question a appliquée avec p(M) donnent alors

$$\det(p(M)) = \prod_{k=0}^{n-1} p(\lambda_k)$$

pour tout $p \in \mathbb{C}[X]$.

Problème.

Partie A.

1. La fonction $u \mapsto \frac{1}{u^2+1} - \frac{\lambda}{u^2+\lambda^2}$ est continue sur \mathbb{R}^+ (car $\lambda \neq 0$) et $O(1/u^2)$ au voisinage de $+\infty$. C'est donc une fonction intégrable sur \mathbb{R}^+ et son intégrale existe a fortiori. Une primitive de cette fonction sur \mathbb{R}^+ est $F: u \mapsto \arctan(u) - \arctan(u/\lambda)$. On a donc (comme $\lambda > 0$)

$$\int_{0}^{+\infty} \left(\frac{1}{u^2 + 1} - \frac{\lambda}{u^2 + \lambda^2} \right) du = \lim_{+\infty} F - F(0) = 0$$

2. En écrivant que $1 - xe^{it} = (1 - x\cos(t)) - ix\sin(t)$, on a immédiatement

$$|1 - xe^{it}|^2 = (1 - x\cos(t))^2 + x^2\sin^2(t) = 1 + x^2 - 2x\cos(t)$$

- 3. Soit $x \in]-1,1[$. Pour tout $t \in \mathbb{R}$, on a $|xe^{it}|=|x|<1$ et donc $1-xe^{it}\neq 0$. Avec la question précédente, on a donc $\forall t \in \mathbb{R}, \ 1+x^2-2x\cos(t)\neq 0.$ $t\mapsto \ln(1+x^2-2x\cos(t))$ est donc continue sur \mathbb{R} . Elle est donc intégrable sur le SEGMENT $[0,\pi]$ et l'intégrale proposée existe (et n'est pas généralisée).
- **4.** La fonction $t \mapsto \pi t$ étant de classe \mathcal{C}^1 sur le segment $[0, \pi]$, on peut poser $u = \pi t$ dans l'intégrale non généralisée précédente pour obtenir

$$\forall x \in]-1,1[, h(x) = \int_0^\pi \ln(1 + 2x\cos(u) + x^2) du = h(-x)$$

ce qui prouve la parité de h.

- 5. On veut utiliser le théorème de régularité des intégrales à paramètres.
 - Pour tout $x \in [0, 1[, t \mapsto \ln(1+x^2-2x\cos(t)) \text{ est intégrable sur } [0, \pi] \text{ (continue sur ce segment)}.$
 - Pour tout $t \in [0, \pi]$, $x \mapsto \ln(1 + x^2 2x\cos(t))$ est de classe C^1 sur [0, 1[, de dérivée $x \mapsto \frac{2(x \cos(t))}{1 + x^2 2x\cos(t)}$.
 - Pour tout $x \in [0,1[, t \mapsto \frac{2(x-\cos(t))}{1+x^2-2x\cos(t)} \text{ est continue sur } [0,\pi].$
 - Pour tout segment $[0,a] \subset [0,1[$, tout $x \in [0,a]$ et tout $t \in [0,\pi]$, on a

$$\left| \frac{2(x - \cos(t))}{1 + x^2 - 2x \cos(t)} \right| = \frac{2|x - \cos(t)|}{|1 - xe^{it}|^2} \le \frac{2(a + |\cos(t)|)}{1 - a^2}$$

la majoration provenant de l'inégalité triangulaire (première forme au numérateur et seconde au dénominateur). Le majorant est une fonction continue de t sur le segment $[0,\pi]$ et est donc intégrable sur ce segment.

Le théorème s'applique et indique que $h \in C^1([0,1])$ avec

$$\forall x \in [0, 1[, h'(x) = 2 \int_0^\pi \frac{x - \cos(t)}{1 + x^2 - 2x \cos(t)} dt$$

6. $t \mapsto \tan(t/2)$ est un C^1 difféomorphisme de $]0,\pi[$ dans $]0,+\infty[$. C'est donc un bon changement de variable (on a ici des contraintes plus grandes sur le changement de variable car il n'est pas défini sur le segment et introduit donc des intégrales généralisées). En remarquant que $\cos(t) = \frac{1-u^2}{1+u^2}$ où $u = \tan(t/2)$ et comme (c'est une identité formelle) $dt = \frac{2du}{1+u^2}$, on a

$$\int_0^\pi \frac{x - \cos(t)}{1 - 2x \cos(t) + x^2} dt = 2 \int_0^{+\infty} \frac{(x - 1) + u^2(x + 1)}{(1 + u^2)((1 + x)^2 u^2 + (1 - x)^2)} du$$

Il suffit alors de factoriser par (x+1) au numérateur et par $(x+1)^2$ au dénominateur pour, en posant $\lambda = \frac{1-x}{1+x}$, obtenir

$$\int_0^\pi \frac{x - \cos(t)}{1 - 2x \cos(t) + x^2} dt = \frac{2}{x+1} \int_0^{+\infty} \frac{u^2 - \lambda}{(u^2 + \lambda^2)(u^2 + 1)} du$$

Une réduction au dénominateur commun donne

$$\frac{1}{u^2+1} - \frac{\lambda}{u^2+\lambda^2} = \frac{(1-\lambda)(u^2-\lambda)}{(u^2+1)(u^2+\lambda^2)}$$

Comme $\frac{2x}{1+x} = 1 - \lambda$, dans le cas où $x \neq 0$ (cela n'intervient qu'ici) on a $\frac{2}{(x+1)(1-\lambda)} = \frac{1}{x}$ et ainsi

$$\int_0^{\pi} \frac{x - \cos(t)}{1 - 2x \cos(t) + x^2} dt = \frac{1}{x} \int_0^{+\infty} \left(\frac{1}{u^2 + 1} - \frac{\lambda}{u^2 + \lambda^2} \right)$$

7. Avec la question A.1, on en déduit que

$$\forall x \in [0, 1[, h'(x) = 0]$$

et donc ([0,1[étant un intervalle), h est constante sur [0,1[. Comme h(0) = 0, h est nulle sur [0,1[et cela reste vrai sur] -1,1[par parité. On a ainsi h' nulle sur] -1,1[.

$$\forall x \in [0, 1[, h(x) = h'(x) = 0]$$

Partie B.

1. On a $C_i = (a^{j-1}, a^{j-2}, \dots, a, 1, a^{n-1}, \dots, a^j)$ et donc

$$C_j - aC_{j-1} = (0, \dots, 0, 1 - a^n, 0, \dots)$$

En effectuant dans cet ordre les opérations $C_j \leftarrow C_j - aC_{j-1}$ pour j = n puis j = n - 1 etc puis j = 2, on obtient une matrice triangulaire ayant le même déterminant que A (les opérations élémentaires laisant le déterminant invariant). On en déduit que

$$\det(A) = (1 - a^n)^{n-1}$$

2. a. On a immédiatement

$$U = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & & & 0 & 1 \\ 1 & 0 & \dots & \dots & 0 \end{pmatrix}$$

b. On développe $det(U - XI_n)$ par rapport à la dernière ligne pour obtenir

$$\chi_U(X) = (-1)^{n+1} \det(T_1(X)) - X \det(T_2(X))$$

avec $T_1(X)$ et $T_2(X)$ triangulaires respectivement inférieure (avec des 1 sur la diagonale) et supérieure (avec des -X sur la diagonale). Ainsi

$$\chi_U(X) = (-1)^{n+1} + (-X)^n = (-1)^n (X^n - 1)$$

c. Les valeurs propres de U étant exactement les racines de χ_U , on a

$$Sp(U) = \{ \omega^k / k \in \{0, 1, \dots, n-1\} \}$$

 χ_U possède n valeurs propres distinctes et comme les sous-espaces propres sont en somme directe, elle possède n sous-espaces propres de dimension 1. La somme des dimensions des sous-espaces propres vaut n est U est diagonalisable.

Remarque : on peut aussi utiliser le théorème de Cayley-Hamilton pour dire que χ_U annule U et conclure car cet annulateur est scindé à racines simples.

- 3. Le résultat préliminaire 2.c et le fait que U est diagonalisable donnent la diagonalisabilité de C_{α} (polynôme en U).
- **4.** En question préliminaire 2.c on a même précisé les valeurs propres et ceci donne directement que celles de C_{α} sont les $q(\omega^k)$ pour $k=0,1,\ldots,n-1$.

Partie C.

1. a. Avec la question B.4, les valeurs propres de Γ_{φ} sont les

$$\sum_{k=0}^{n-1} \alpha_k \omega^{k\ell} = \frac{1}{n} \sum_{k=0}^{n-1} \left(\sum_{s=0}^{n-1} \varphi\left(\frac{2s\pi}{n}\right) \omega^{-ks} \right) \omega^{k\ell}$$

que l'énoncé choisit de noter λ_{ℓ} .

b. Les indices étant indépendants, on peut permuter les sommes pour obtenir

$$\lambda_{\ell} = \frac{1}{n} \sum_{s=0}^{n-1} \left(\sum_{k=0}^{n-1} \omega^{(\ell-s)k} \right) \varphi\left(\frac{2s\pi}{n}\right)$$

D'après la question 1.c des préliminaires, $\sum_{k=0}^{n-1} \omega^{(\ell-s)k}$ vaut 0 sauf si $\ell-s$ est multiple de n. Comme s prend n valeurs successives, seule l'une d'entre elles donne pour $\ell-s$ un multiple de n. Et comme $\ell \in \{0, \ldots, n-1\}$ cette valeur est $s=\ell$ (la somme valant alors n). Ainsi

$$\lambda_{\ell} = \varphi\left(\frac{2\ell\pi}{n}\right)$$

c. La question 2.d du préliminaire donne ensuite

$$\det(\Gamma\varphi) = \prod_{\ell=0}^{n-1} \lambda_{\ell} = \prod_{\ell=0}^{n-1} \varphi\left(\frac{2\ell\pi}{n}\right)$$

- **2.** a. $|1 ae^{it}| \ge 1 |a| > 0$ pour tout t et φ est donc bien définie sur \mathbb{R} .
 - **b.** En utilisant la formule pour une somme géométrique de raison $a\omega^s \neq 1$ (< 1 en module) on obtient

$$\sum_{\ell=0}^{n-1} a^\ell \omega^{s\ell} = \frac{1 - (a\omega^s)^n}{1 - a\omega^s} = \frac{1 - a^n}{1 - ae^{\frac{2is\pi}{n}}} = \varphi\left(\frac{2s\pi}{n}\right)$$

c. On a ainsi

$$\alpha_k = \frac{1}{n} \sum_{s=0}^{n-1} \left(\sum_{\ell=0}^{n-1} a^{\ell} \omega^{s\ell} \right) \omega^{-ks} = \frac{1}{n} \sum_{\ell=0}^{n-1} \left(\sum_{s=0}^{n-1} \omega^{s(\ell-k)} \right) a^{\ell}$$

et toujours avec 1.c des préliminaires $\alpha_k = a^k$. A et Γ_{φ} ont même première ligne et sont alors égales (les autres lignes se déduisant de la première par "rotation").

Partie D.

- 1. $\frac{1}{n}\sum_{\ell=0}^{n-1}F\left(\frac{2\ell\pi}{n}\right)$ est la somme de Riemann de F associée à la subdivision régulière d'ordre n de $[0,2\pi]$. Comme F est continue sur ce segment, on a donc le résultat annoncé.
- **2. a.** On a toujours $|1 ae^{it}| \ge 1 |a| > 0$ qui montre que F est bien définie sur \mathbb{R} . Elle y est alors continue par les théorèmes d'opération.
 - **b.** On a (le logarithme est un morphisme)

$$\frac{1}{n} \sum_{\ell=0}^{n-1} F\left(\frac{2\ell\pi}{n}\right) = \frac{1}{n} \ln \left(\left| \prod_{\ell=0}^{n-1} \frac{1}{(1 - ae^{\frac{2i\ell\pi}{n}})} \right| \right) = \frac{1}{n} \ln \left(\frac{1}{|a^n \prod_{\ell=0}^{n-1} (1/a - \omega^{\ell})|} \right)$$

Avec la question préliminaire 1.b on en déduit que

$$\frac{1}{n} \sum_{\ell=0}^{n-1} F\left(\frac{2\ell\pi}{n}\right) = \frac{1}{n} \ln\left(\frac{1}{|a^n(1/a^n - 1)|}\right) = \frac{1}{n} \ln\left(\frac{1}{1 - a^n}\right)$$

Compte-tenu de l'expression de $\det(A)$ on a $\frac{1}{1-a^n} = \frac{\det(A)}{(1-a^n)^n}$. Toujours avec la propriété de morphisme du logarithme, on conclut que

$$\frac{1}{n} \sum_{\ell=0}^{n-1} F\left(\frac{2\ell\pi}{n}\right) = \ln\left(\frac{(\det(A))^{1/n}}{1 - a^n}\right)$$

La question D.1 donne alors

$$\frac{1}{2\pi} \int_0^{2\pi} \ln\left(\left|\frac{1}{1 - ae^{it}}\right|\right) dt = \lim_{n \to +\infty} \ln\left(\frac{(\det(A))^{1/n}}{1 - a^n}\right)$$

c. D'une part, on a $F(t) = -\frac{1}{2} \ln(1 + a^2 - 2a \cos(t))$ et donc

$$h(a) = -2\int_0^{\pi} F(t) dt$$

et comme F est paire (avec l'expression ci-dessus) et 2π -périodique, on a donc

$$h(a) = -\int_{-\pi}^{\pi} F(t) dt = -\int_{0}^{2\pi} F(t) dt$$

D'autre part, comme |a| < 1,

$$\frac{(\det(A))^{1/n}}{1 - a^n} = -\frac{1}{n}\ln(1 - a^n) \underset{n \to +\infty}{\to} 0$$

et avec la question précédente,

$$\int_0^{2\pi} F(t) dt = 0$$

On retrouve que

$$\forall a \in]-1,1[, h(a) = 0$$