Partie A : un arc de cercle apparent

- 1. On a $d(O, M(\theta)) = \sqrt{\cos^2(\theta) + \sin^2(\theta)} = 1$ donc $M(\theta)$ appartient au cercle \mathcal{C} .
- 2. (a) Comme $a \in]1, +\infty[$, on a $\frac{1}{a} \in]0, 1[$. Comme Arccos réalise une bijection (continue et strictement décroissante) entre]0, 1[et $]0, \frac{\pi}{2}[$, on en déduit l'existence de ω avec $\omega \in]0, \frac{\pi}{2}[$.
 - (b) Les coordonnées de $\overrightarrow{OM(\omega)}$ sont :

$$x_M = \cos(\omega) = \cos\left(\operatorname{Arccos}\left(\frac{1}{a}\right)\right) = \frac{1}{a}$$

$$y_M = \sin(\omega) = \sin\left(\operatorname{Arccos}\left(\frac{1}{a}\right)\right) = \pm\sqrt{1 - \cos^2\left(\operatorname{Arccos}\left(\frac{1}{a}\right)\right)}$$

$$= \sqrt{1 - \cos^2\left(\operatorname{Arccos}\left(\frac{1}{a}\right)\right)} \quad \left(\sin(\omega) > 0 \text{ car } a \in]0, \frac{\pi}{2}[\right)$$

Après simplification on obtient :

$$\begin{cases} x_M = \frac{1}{a} \\ y_M = \frac{1}{a} \sqrt{a^2 - 1} \end{cases}$$

D'où les coordonnées de $\overrightarrow{AM(\omega)}$:

$$\begin{cases} x_M - x_A = \cos(\omega) - a = \frac{1}{a} - a = \frac{1}{a} (1 - a^2) \\ y_M - y_A = \sin(\omega) = \frac{1}{a} \sqrt{a^2 - 1} \end{cases}$$

(c) On vient de voir que $\cos(\omega) = \frac{1}{a}$, ce qui donne immédiatement :

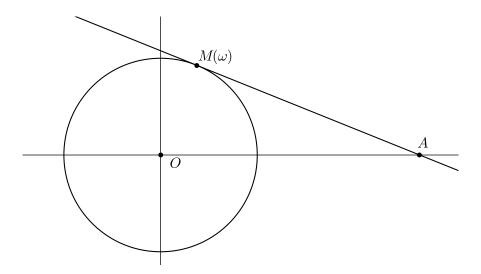
$$a = \frac{1}{\cos(\omega)}$$

(d) Pour vérifier que $(AM(\omega))$ est tangente au cercle \mathcal{C} , nous allons démontrer que les vecteurs $\overrightarrow{AM(\omega)}$ et $\overrightarrow{OM(\omega)}$ sont orthogonaux en calculant leur produit scalaire :

$$\overrightarrow{AM(\omega)}.\overrightarrow{OM(\omega)} = \begin{pmatrix} \frac{1}{a}(1-a^2) \\ \frac{1}{a}\sqrt{a^2-1} \end{pmatrix} \cdot \begin{pmatrix} \frac{1}{a} \\ \frac{1}{a}\sqrt{a^2-1} \end{pmatrix} = \frac{1}{a^2}(1-a^2) + \frac{1}{a^2}(a^2-1) = 0$$

Ainsi,

 $(AM(\omega))$ est tangente au cercle $\mathcal C$



3. (a) Comme $\cos(x) \in]-1,1[$ et a>1, on a toujours $\cos(x)-a<0.$ Le quotient a donc bien un sens et

$$f$$
 est définie sur $\mathbb R$

Par ailleurs, les fonctions cos et sin étant de classe \mathcal{C}^1 sur \mathbb{R} (et même de classe \mathcal{C}^{∞}), on en déduit par opérations algébriques que

$$f$$
 est de classe \mathcal{C}^1 sur \mathbb{R}

(b) Pour tout $x \in \mathbb{R}$, on a :

$$f(-x) = \frac{\sin(-x)}{\cos(-x) - a} = \frac{-\sin(x)}{\cos(x) - a} = -f(x)$$

Ainsi,

$$f$$
 est impaire

Remarque. On peut donc réduire l'étude de f à \mathbb{R}^+ . On obtiendra ensuite toute la courbe en faisant une symétrie par rapport à l'origine.

(c) On dérive comme un quotient :

$$f'(x) = \frac{\cos(x) \left[\cos(x) - a\right] - \sin(x) \left[-\sin(x)\right]}{\left(\cos(x) - a\right)^2}$$
$$= \frac{\cos^2(x) - a\cos(x) + \sin^2(x)}{\left(\cos(x) - a\right)^2}$$
$$= \frac{1 - a\cos(x)}{\left(\cos(x) - a\right)^2}$$

(d) Le dénominateur étant strictement positif, le signe de f'(x) est celui de $1 - a\cos(x)$, c'est à dire celui de $\frac{1}{a} - \cos(x)$. La fonction cos étant décroissante sur $[0, \pi]$, pour tout $x \in [0, \pi]$, on

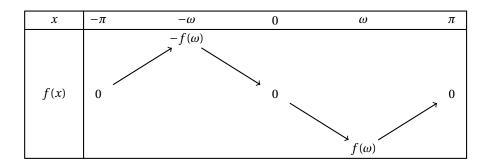
a les équivalences suivantes :

$$\frac{1}{a} - \cos(x) > 0 \iff \frac{1}{a} > \cos(x)$$
$$\iff \operatorname{Arccos}\left(\frac{1}{a}\right) < x$$
$$\iff \omega < x$$

Ainsi,

f est strictement décroissante sur $[0,\omega]$ et strictement croissante sur $[\omega,\pi]$.

(e) En complétant par imparité, on obtient le tableau de variations suivant :



4. La droite verticale passant par A ne coupe pas le cercle \mathcal{C} (car la distance entre cette droite et \mathcal{C} vaut a-1>0). Toutes les autres droites passant par A ont une équation de la forme y=mx+p, ce qui est le cas de la droite \mathcal{D} . Comme elle passe par A on a $y_A=mx_A+p$ ce qui donne facilement p=-ma. La droite \mathcal{D} a donc une équation de la forme :

$$y = m(x - a)$$
 avec $m \in \mathbb{R}$

5. Pour tout $(m, \theta) \in \mathbb{R}^2$ on a les équivalences suivantes :

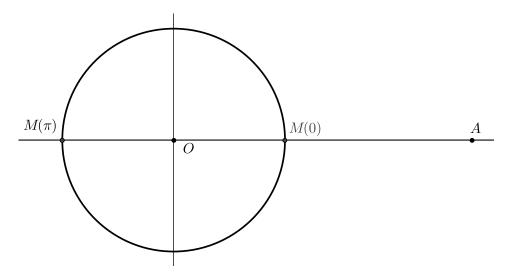
$$M(\theta) \in \mathcal{D}_m \iff \sin(\theta) = m(\cos(\theta) - a)$$

 $\iff m = \frac{\sin(\theta)}{\cos(\theta) - a}$
 $\iff m = f(\theta)$

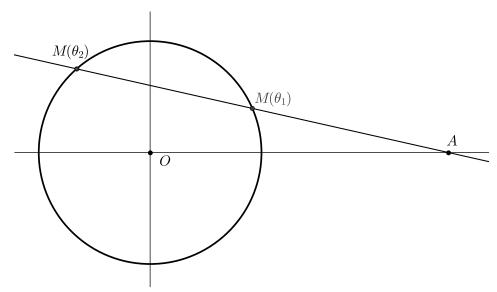
6. Le point M(0) a pour coordonnées (1,0) et le point $M(\pi)$ a pour coordonnées (-1,0). Ces deux points sont évidemment sur la droite \mathcal{D}_0 d'équation y=0.

Ces deux points sont les seuls points d'intersection entre \mathcal{C} et \mathcal{D}_0 . Comme $-1 \leqslant 1$ (abscisses des deux points), on en déduit, par définition, que :

M(0) est visible du point A alors que $M(\pi)$ ne l'est pas



- 7. (a) Notons $m = f(\theta_1) = f(\theta_2)$. D'après le résultat de la question 5, on a d'une part $m = f(\theta_1)$ donc $M(\theta_1) \in \mathcal{D}_m$ et d'autre part $m = f(\theta_2)$ donc $M(\theta_2) \in \mathcal{D}_m$. Comme par définition on a aussi $A \in \mathcal{D}_m$, la droite \mathcal{D}_m contient les trois points A, $M(\theta_1)$ et $M(\theta_2)$ ce qui prouve qu'ils sont alignés.
 - (b) D'une part $M(\theta_1)$ et $M(\theta_2)$ sont les deux seuls points d'intersection de la droite \mathcal{D}_m avec \mathcal{C} . D'autre part, on a $0 \leq \theta_1 < \theta_2 \leq \pi$ et la fonction cos est strictement décroissante sur $[0, \pi]$ donc $\cos(\theta_1) > \cos(\theta_2)$. Comme les nombres $\cos(\theta_1)$ et $\cos(\theta_2)$ sont respectivement les abscisses des point $M(\theta_1)$ et $M(\theta_2)$, cela prouve, par définition que $M(\theta_1)$ est visible du point A et que $M(\theta_2)$ ne l'est pas.



- (c) La fonction f étant strictement décroissante sur $[0, \omega]$, l'égalité $f(\theta_1) = f(\theta_2)$ fait qu'il est impossible d'avoir $\theta_2 \leq \omega$ (sinon on aurait deux éléments de $[0, \omega]$ ayant la même image et f ne serait plus injective). On a donc $\theta_2 > \omega$.
 - De même, f étant strictement croissante sur $[\omega, \pi]$, l'égalité $f(\theta_1) = f(\theta_2)$ fait qu'il est impossible d'avoir $\theta_1 \geqslant \omega$ (sinon on aurait deux éléments de $[\omega, \pi]$ ayant la même image et f ne serait plus injective). On a donc $\theta_1 < \omega$.

Pour conclure, on a donc :

$$\theta_1 < \omega < \theta_2$$

8. (a) Si $\theta = \omega$, alors la droite \mathcal{D}_m est tangente au cercle \mathcal{C} (d'après le résultat de la question 2.d): comme il n'y a qu'un seul point d'intersection entre la droite et le cercle, le point d'intersection est évidemment visible du point A dans ce cas.

On suppose maintenant que $\theta < \omega$.

À la lecture du tableau de variation, on a donc $m = f(\theta) > f(\omega)$.

Toujours à la lecture du tableau de variation, l'équation $f(\theta) = m$ possède exactement deux solutions dans $[0, \pi]$:

$$\begin{cases} \theta_1 = \theta \in [0, \omega[\\ \theta_2 \in]\omega, \pi] \end{cases}$$

Les deux seuls points d'intersection entre la droite $(AM(\theta))$ et le cercle \mathcal{C} sont $M(\theta_1) = M(\theta)$ et $M(\theta_2)$. Comme $0 \leq \theta_1 < \omega < \theta_2 \leq \pi$, on en déduit d'après le résultat de la question 7.b que

le point
$$M(\theta) = M(\theta_1)$$
 est visible du point A .

(b) On raisonne de manière analogue en posant $m=f(\theta)>f(\omega)$.

À la lecture du tableau de variation, l'équation $f(\theta) = m$ possède exactement deux solutions dans $[0, \pi]$:

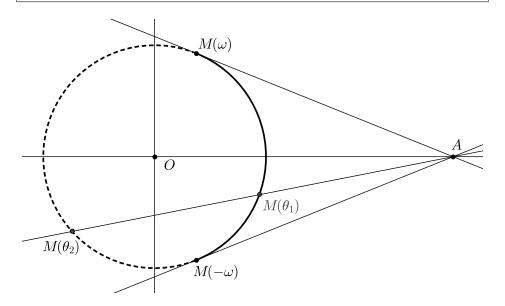
$$\begin{cases} \theta_1 \in [0, \omega[\\ \theta_2 = \theta \in]\omega, \pi] \end{cases}$$

Les deux seuls points d'intersection entre la droite $(AM(\theta))$ et le cercle \mathcal{C} sont $M(\theta_1)$ et $M(\theta_2) = M(\theta)$. Comme $0 \leq \theta_1 < \omega < \theta_2 \leq \pi$, on en déduit d'après le résultat de la question 7.b que

le point
$$M(\theta) = M(\theta_2)$$
 n'est pas visible du point A.

9. Par symétrie on peut facilement voir que :

 $\begin{cases} \text{ si } \theta \in [-\omega, 0] \text{ alors } M(\theta) \text{ est visible depuis le point } A; \\ \text{ si } \theta \in [-\pi, -\omega[\text{ alors } M(\theta) \text{ n'est pas visible depuis le point } A. \end{cases}$



Partie B: un contour apparent d'une quadrique

1.
$$\forall \lambda \in \mathbb{R}$$
, $P_S(\lambda) = \det(S - \lambda I_2) = \begin{vmatrix} 1 - \lambda & -\frac{1}{2} \\ -\frac{1}{2} & 1 - \lambda \end{vmatrix} = (1 - \lambda)^2 - \frac{1}{4}$

$$= \left(1 - \lambda - \frac{1}{2}\right) \left(1 - \lambda + \frac{1}{2}\right) = \left(\frac{1}{2} - \lambda\right) \left(\frac{3}{2} - \lambda\right)$$
et:
$$\operatorname{Sp}(S) = \left\{\frac{1}{2}, \frac{3}{2}\right\}$$

2. (a) R est une matrice symétrique réelle.

D'après le théorème spectral, R est donc diagonalisable par le biais d'une matrice orthogonale, autrement dit, il existe une matrice diagonale $D \in \mathcal{M}_3(\mathbb{R})$ et une matrice $\Omega \in \mathcal{M}_3(\mathbb{R})$ orthogonale, telles que $D = \Omega^{-1}R\Omega$.

Or Ω est orthogonale, donc $\Omega^{-1} = {}^t\Omega$. Finalement :

$$D = {}^t\Omega R\Omega$$

(b)
$$\forall \lambda \in \mathbb{R}$$
, $P_R(\lambda) = \det(R - \lambda I_3) = \begin{vmatrix} 3 - \lambda & 0 & 0 \\ 0 & 1 - \lambda & -\frac{1}{2} \\ 0 & -\frac{1}{2} & 1 - \lambda \end{vmatrix}$

$$= (3 - \lambda) \cdot \begin{vmatrix} 1 - \lambda & -\frac{1}{2} \\ -\frac{1}{2} & 1 - \lambda \end{vmatrix}$$
 en développant par rapport à la 1ère colonne

$$= (3 - \lambda) \cdot [(1 - \lambda)^2 - \frac{1}{4}] = (3 - \lambda)(\lambda - \frac{1}{2})(\lambda - \frac{3}{2})$$
 d'après la question 1.

Ainsi,

$$Sp(R) = \left\{\frac{1}{2}, \frac{3}{2}, 3\right\}$$

On peut donc prendre:

$$D = \begin{pmatrix} \frac{1}{2} & 0 & 0 \\ 0 & \frac{3}{2} & 0 \\ 0 & 0 & 3 \end{pmatrix}$$

Déterminons alors $E_{\frac{1}{2}} = \ker(R - \frac{1}{2}I_3)$:

$$\overrightarrow{u}_{1} \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in E_{\frac{1}{2}} \iff (R - \frac{1}{2}I_{3}) \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\Leftrightarrow \begin{pmatrix} \frac{5}{2} & 0 & 0 \\ 0 & \frac{1}{2} & -\frac{1}{2} \\ 0 & -\frac{1}{2} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

On sait que $\frac{1}{2}$ est une valeur propre d'ordre de multiplicité 1 donc dim $E_{\frac{1}{2}}=1$.

De plus,
$$\overrightarrow{u}_1 \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \in E_{\frac{1}{2}} \text{ donc } E_{\frac{1}{2}} = vect \begin{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \end{pmatrix}$$
.

Comme on cherche une matrice Ω orthogonale, il faut normer le vecteur propre précédent. Soit :

$$\overrightarrow{e_1} = \frac{1}{\sqrt{2}}. \begin{pmatrix} 0\\1\\1 \end{pmatrix}$$

$$E_{\frac{1}{2}} = vect(\overrightarrow{e_1})$$

Remarque. La question est ambigüe : il est difficile de savoir si les correcteurs attendent les détails pour la recherche d'un sous-espace propre, ou si le fait d'expliquer comment on fait avec la calculatrice suffit . . .

On détermine de même les vecteurs propres associés aux valeurs propres $\frac{3}{2}$ et 3.

Ceci peut se faire à l'aide de la calculatrice, en utilisant par exemple la TI nspire CAS :

- On saisit la matrice à l'aide de l'éditeur graphique, dans la variable R.
- On tape "eigVl(R)", puis "eigVc(R)". La calculatrice donne alors les valeurs propres, puis les vecteurs propres correspondants.
- En identifiant 0.707107 à $\sqrt{2}$, on pose donc :

$$\overrightarrow{e_2} = \frac{1}{\sqrt{2}}. \begin{pmatrix} 0\\1\\-1 \end{pmatrix} \text{ et on a } : E_{\frac{3}{2}} = vect(\overrightarrow{e_2})$$

$$\overrightarrow{e_3} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \text{ et on a } : E_3 = vect(\overrightarrow{e_3})$$

Remarque. Il est par ailleurs très facile de voir que R. $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = 3 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $donc \overrightarrow{e_3} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ est un vecteur propre associé à la valeur propre 3.

Conclusion. On a $D = {}^t\Omega R\Omega$ avec

$$D = \begin{pmatrix} \frac{1}{2} & 0 & 0 \\ 0 & \frac{3}{2} & 0 \\ 0 & 0 & 3 \end{pmatrix} et \Omega = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 0 & \sqrt{2} \\ 1 & 1 & 0 \\ 1 & -1 & 0 \end{pmatrix}$$

3. Soit la forme quadratique $q: \mathcal{E}_3 \to \mathbb{R}$ où \mathcal{E}_3 est l'espace eucli $x\overrightarrow{1} + y\overrightarrow{1} + z\overrightarrow{k} \mapsto 3x^2 + y^2 - yz + z^2$

dien orienté de l'énoncé.

Remarque. $(x, y, z) \mapsto 3x^2 + y^2 - yz + z^2$ est un polynôme homogène de degré 2, donc q est bien une forme quadratique.

Soit M le point de \mathcal{E}_3 tel que $\overrightarrow{OM} = x \overrightarrow{1} + y \overrightarrow{J} + z \overrightarrow{k}$, Σ a pour équation $q(\overrightarrow{OM}) = 1$.

La matrice de q dans la base $(\overrightarrow{1}, \overrightarrow{J}, \overrightarrow{k})$ est R.

Plaçons nous dans le repère $\mathcal{R}' = (O; \overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3})$.

D'après les formules de changement de base pour la matrice d'une forme quadratique, la matrice de q dans la base $(\overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3})$ est ${}^t\Omega R\Omega = D$, car Ω est la matrice de passage de $(\overrightarrow{1}, \overrightarrow{1}, \overrightarrow{k})$ à $(\overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3})$.

Si on note (X, Y, Z) les coordonnées de M dans le repère \mathcal{R}' , une équation de Σ est alors :

$$q\left(\overrightarrow{OM}\right) = 1$$

$$\Leftrightarrow \begin{pmatrix} X \\ Y \\ Z \end{pmatrix} .D. \begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = 1$$

$$\Leftrightarrow \frac{1}{2}X^2 + \frac{3}{2}Y^2 + 3Z^2 = 1$$

Cette équation est de la forme $\frac{X^2}{a^2} + \frac{Y^2}{b^2} + \frac{Z^2}{c^2} = 1$,

 Σ est un ellipsoïde.

4. (a) $M \in \mathcal{E} \iff M$ est à la fois dans le plan \mathcal{P} et sur Σ

$$\iff \begin{cases} x = \frac{1}{3} \\ 3x^2 + y^2 - yz + z^2 = 1 \end{cases}$$

$$\iff \begin{cases} x = \frac{1}{3} \\ 3x^2 + y^2 - yz + z^2 = 1 \end{cases}$$

$$\iff \begin{cases} x = \frac{1}{3} \\ 3 \cdot \left(\frac{1}{3}\right)^2 + y^2 - yz + z^2 = 1 \end{cases}$$

$$\iff \begin{cases} x = \frac{1}{3} \\ \frac{1}{3} + y^2 - yz + z^2 = 1 \end{cases}$$

Ainsi,
$$M \in \mathcal{E} \iff \begin{cases} x = \frac{1}{3} \\ y^2 - yz + z^2 = \frac{2}{3} \end{cases}$$

(b) Soit $O'(\frac{1}{3},0,0)$ et $\boxed{\mathcal{R}_2 = (O'; \overrightarrow{J}, \overrightarrow{k})}$ un repère de \mathcal{P} .

Dans \mathcal{R}_2 , \mathcal{E} a pour équation $y^2 - yz + z^2 = \frac{2}{3}$ de la forme $ay^2 + bz^2 + cyz + dy + ez = f$: \mathcal{E} est donc une conique, éventuellement dégénérée.

Soit la forme quadratique $q_2: \mathcal{P} \to \mathbb{R}$ $y\overrightarrow{\jmath} + z\overrightarrow{k} \mapsto y^2 - yz + z^2$ (polynôme homogène de degré 2)

La matrice de q_2 dans la base $(\overrightarrow{J}, \overrightarrow{k})$ est S.

On a vu que $\operatorname{Sp}(S) = \left\{ \frac{1}{2}, \frac{3}{2} \right\}$.

Chaque valeur propre étant de multiplicité 1, les sous-espaces propres $E_{\frac{1}{2}}(S)$ et $E_{\frac{3}{2}}(S)$ sont de dimension 1.

Appelons \overrightarrow{J} et \overrightarrow{K} des vecteurs propres normés tels que $E_{\frac{1}{2}}(S) = vect(\overrightarrow{J})$ et $E_{\frac{3}{2}}(S) = vect(\overrightarrow{K})$,

la matrice de q_2 dans la base $(\overrightarrow{J}, \overrightarrow{K})$ est $D_2 = \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & \frac{3}{2} \end{pmatrix}$.

La matrice S étant symétrique réelle, ses sous-espaces propres sont orthogonaux entre eux. Il en résulte que la famille $(\overrightarrow{J}, \overrightarrow{K})$ est orthonormale (donc libre). \mathcal{P} étant un plan, $(O'; \overrightarrow{J}, \overrightarrow{K})$ est donc un repère orthonormé de \mathcal{P} .

 \mathcal{E} a pour équation $y^2 - yz + z^2 = \frac{2}{3}$ dans \mathcal{R}_2 , ce qui équivaut à $q_2\left(\overrightarrow{OM}\right) = \frac{2}{3}$ en notant (y,z) les coordonnées de M dans \mathcal{R}_2 .

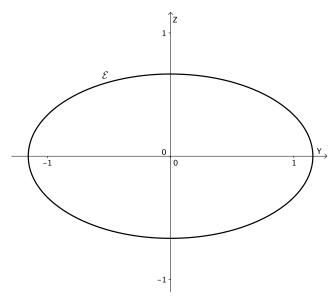
Notons alors (Y, Z) les coordonnées de M dans $(O'; \overrightarrow{J}, \overrightarrow{K})$. Dans le repère $(O'; \overrightarrow{J}, \overrightarrow{K})$, \mathcal{E} a pour équation : $\begin{pmatrix} Y \\ Z \end{pmatrix} . D_2 . \begin{pmatrix} Y \\ Z \end{pmatrix} = \frac{2}{3} \iff \frac{1}{2}Y^2 + \frac{3}{2}Z^2 = \frac{2}{3} \iff \frac{3}{4}Y^2 + \frac{9}{4}Z^2 = 1$ en multipliant par $\frac{2}{3}$

(c) \mathcal{E} a une équation de la forme $\frac{Y^2}{a^2} + \frac{Z^2}{b^2} = 1$ avec $a = \frac{2}{\sqrt{3}}$ et $b = \frac{2}{3}$. (On a bien a > b) $\boxed{\mathcal{E} \text{ est une ellipse}} \text{ de centre } O', \text{ de grand axe } [\alpha \alpha'] \text{ où } \alpha \text{ et } \alpha' \text{ sont les sommets de coordonnées}$ $\left(-\frac{2}{\sqrt{3}}, 0\right) \text{ et } \left(\frac{2}{\sqrt{3}}, 0\right) \text{ dans le repère } (O'; \overrightarrow{J}, \overrightarrow{K}).$

Remarques.

 \diamond Pour la construction de \mathcal{E} , on connait également le petit axe $[\beta\beta']$ où β et β' sont les points de coordonnées $\left(0, -\frac{2}{3}\right)$ et $\left(0, \frac{2}{3}\right)$ dans le repère $(O'; \overrightarrow{J}, \overrightarrow{K})$.

$$\diamondsuit \frac{2}{\sqrt{3}} \simeq 1, 2$$



Remarque. La surface d'équation $y^2 - yz + z^2 = \frac{2}{3} dans (O; \overrightarrow{1}, \overrightarrow{j}, \overrightarrow{k})$ est un cylindre elliptique de direction (Ox). \mathcal{E} est une section droite de ce cylindre.

5. (a)
$$3x_N^2 + y_N^2 - y_N z_N + z_N^2 = 3 \times 0^2 + 0 - 0 \times 1 + 1^2 = 1$$
, donc:

$$N \in \Sigma$$

(b) \overrightarrow{NA} a pour coordonnées (1,0,-1). Il en résulte que $(NA) = N + vect(\overrightarrow{NA})$ a pour équations paramétriques :

$$\begin{cases} x = \lambda \\ y = 0 \\ z = 1 - \lambda \end{cases}, \lambda \in \mathbb{R}$$

$$\begin{bmatrix} x = \lambda \\ y = 0 \\ z = 1 - \lambda \end{bmatrix}$$
(c) $M(x, y, z) \in (NA) \cap \Sigma \iff \exists \lambda \in \mathbb{R}, \begin{cases} 3x^2 + y^2 - yz + z^2 = 1 \\ x = \lambda \\ y = 0 \\ z = 1 - \lambda \end{cases}$

$$\Leftrightarrow \exists \lambda \in \mathbb{R}, \begin{cases} x = \lambda \\ y = 0 \\ z = 1 - \lambda \\ 3\lambda^2 + (1 - \lambda)^2 = 1 \end{cases}$$

$$\Leftrightarrow \exists \lambda \in \mathbb{R}, \begin{cases} x = \lambda \\ y = 0 \\ z = 1 - \lambda \\ 4\lambda^2 - 2\lambda = 0 \end{cases}$$

$$\Leftrightarrow \exists \lambda \in \mathbb{R}, \begin{cases} x = \lambda \\ y = 0 \\ z = 1 - \lambda \\ 4\lambda^2 - 2\lambda = 0 \end{cases}$$

$$\Leftrightarrow \exists \lambda \in \mathbb{R}, \begin{cases} x = \lambda \\ y = 0 \\ z = 1 - \lambda \\ \lambda(2\lambda - 1) = 0 \end{cases}$$

D'où
$$M(x,y,z)\in (NA)\cap \Sigma \iff M(0,0,1)=N$$
 ou $M\left(\frac{1}{2},0,\frac{1}{2}\right)$

Conclusion. (NA) coupe la surface Σ en N et au point $M'\left(\frac{1}{2},0,\frac{1}{2}\right)$.

Comme $\frac{1}{2} > 0$, on a trouvé un point M', point d'intersection de Σ avec (AN) qui vérifie $x_{M'} > x_N$, donc

N n'est pas visible du point A.

6.

$$\forall (u, v, w) \in \mathbb{R}^3, \ \overrightarrow{grad} \ \phi(u, v, w) = \begin{pmatrix} \frac{\partial \phi}{\partial u}(u, v, w) \\ \frac{\partial \phi}{\partial v}(u, v, w) \\ \frac{\partial \phi}{\partial w}(u, v, w) \end{pmatrix} = \begin{pmatrix} 6u \\ 2v - w \\ -v + 2w \end{pmatrix}$$

7. (a)
$$3x_B^2 + y_B^2 - y_B z_B + z_B^2 = 3\left(\frac{1}{3}\right)^2 + \left(\frac{\sqrt{2}}{3}\right)^2 - \frac{\sqrt{2}}{3} \cdot \left(-\frac{\sqrt{2}}{3}\right) + \left(-\frac{\sqrt{2}}{3}\right)^2 = \frac{1}{3} + \frac{2}{9} + \frac{2}{9} + \frac{2}{9}$$

$$= \frac{3+6}{9} = 1, \text{ donc}:$$

$$\boxed{B \in \Sigma}$$

(b) Σ a pour équation $\phi(x, y, z) = 0$.

$$B \in \Sigma \text{ et } \overrightarrow{grad} \phi(B) = \begin{pmatrix} 2 \\ \sqrt{2} \\ -\sqrt{2} \end{pmatrix} \neq \overrightarrow{0}, \text{ donc}$$

 $\overrightarrow{grad} \phi(B)$ dirige la normale au plan tangent à Σ en B.

Ainsi,
$$M(x, y, z) \in \Pi_B$$
 $\Leftrightarrow \overrightarrow{BM}. \overrightarrow{grad} \phi(B) = 0$

$$\Leftrightarrow \begin{pmatrix} x - \frac{1}{3} \\ y - \frac{\sqrt{2}}{3} \\ z + \frac{\sqrt{2}}{3} \end{pmatrix} \cdot \begin{pmatrix} 2 \\ \sqrt{2} \\ -\sqrt{2} \end{pmatrix} = 0$$

$$\Leftrightarrow 2\left(x - \frac{1}{3}\right) + \sqrt{2}\left(y - \frac{\sqrt{2}}{3}\right) - \sqrt{2}\left(z + \frac{\sqrt{2}}{3}\right) = 0$$

$$\Leftrightarrow 2x - \frac{2}{3} + \sqrt{2}y - \frac{2}{3} - \sqrt{2}z - \frac{2}{3} = 0$$

$$\Leftrightarrow 2x + \sqrt{2}y - \sqrt{2}z - 2 = 0$$

$$\Leftrightarrow 2x + \sqrt{2}y - \sqrt{2}z = 2$$

(c)
$$2x_A + \sqrt{2}y_A - \sqrt{2}z_A = 2 + 0 - 0 = 2$$
, donc

$$A \in \Pi_B$$

Comme A appartient au plan tangent à la surface Σ en B, d'après l'énoncé,

$$B \in \Gamma$$

8.
$$\overrightarrow{grad} \phi(T) = \begin{pmatrix} 6u \\ 2v - w \\ -v + 2w \end{pmatrix} = \overrightarrow{0}$$
 si et seulement si $u = v = w = 0$.

De la même manière qu'à la question 7.(b),

$$M(x,y,z) \in \Pi_T \iff \overrightarrow{TM}. \overrightarrow{grad} \phi(T) = 0$$

$$\Leftrightarrow \begin{pmatrix} x-u \\ y-v \\ z-w \end{pmatrix} \cdot \begin{pmatrix} 6u \\ 2v-w \\ -v+2w \end{pmatrix} = 0$$

$$\Leftrightarrow 6u(x-u) + (2v-w)(y-v) + (-v+2w)(z-w) = 0$$

$$\Leftrightarrow 6ux - 6u^2 + (2v-w)y - 2v^2 + vw + (-v+2w)z + vw - 2w^2 = 0$$

$$\Leftrightarrow 6ux + (2v-w)y + (-v+2w)z - 6u^2 - 2v^2 + 2vw - 2w^2 = 0$$

$$\Leftrightarrow 6ux + (2v-w)y + (-v+2w)z - 2\underbrace{(3u^2 + v^2 - vw + w^2)}_{=1 \text{ car } T \in \Sigma} = 0$$

$$\Leftrightarrow 6ux + (2v-w)y + (2w-v)z = 2$$

9.
$$T(u, v, w) \in \Gamma \Leftrightarrow \begin{cases} T \in \Sigma \\ A \in \Pi_T \end{cases}$$

$$\Leftrightarrow \begin{cases} T \in \Sigma \\ 6u \times 1 + 0 + 0 = 2 \end{cases}$$

$$\Leftrightarrow \begin{cases} 3u^2 + v^2 - vw + w^2 = 1 \\ u = \frac{1}{3} \end{cases}$$

$$\Leftrightarrow T \in \mathcal{P} \cap \Sigma = \mathcal{E}$$

Conclusion.

$$\Gamma = \mathcal{E}$$

Rédigé par :

Pierre Béjian, TSI 2, Lycée Antonin Artaud, Marseille et Frédérique Evrard, TSI 2, Lycée Rouvière, Toulon.