Correction Brevet des Collèges DNB Amérique du Nord - Juin 2013

www.mathexams.fr

Exercice 1. 4 points

Cet exercice est un QCM.

Les justifications ici proposées n'étaient pas demandées.

1. Réponse c

La somme des probabilités sur les branches doit être égale à 1 donc ici, si on note T la probabilité manquante sous la tache on a :

$$T = 1 - \frac{1}{9} - \frac{1}{3}$$

$$T = \frac{9}{9} - \frac{1}{9} - \frac{3}{9}$$

$$T = \frac{9 - 1 - 3}{9}, \text{ et donc}$$

$$T = \frac{5}{9}$$

2. Réponse b

- Il y a 34 tables à 4 pieds soit $4 \times 34 = 136$ pieds pour ces tables;
- Il reste alors 169 136 = 33 pieds pour les tables à 3 pieds;
- On a donc $33 \div 3 = 11$ tables à 3 pieds

3. Réponse a

La partie immergée de l'iceberg représente 90% du volume donc la partie visible représente 10% du volume.

- Méthode 1.

On peut tester les 3 solutions proposées.

- On a 10% de 3 500 m qui représentent : $\frac{10}{100} \times 3500 = 350$ m. La réponse b est exclue.
- On a 10% de 3 500 m qui représentent : $\frac{100}{100} \times 31,5 = 3,15$ m. La réponse c est exclue.
- On a 10% de 350 m qui représentent : $\frac{10}{100} \times 350 = 35$ m. La réponse a est la bonne.

- Méthode 2.

On peut calculer la hauteur totale h par un calcul direct.

On sait que
$$\frac{10}{100} \times h = 35$$
 donc $0, 1 \times h = 35$ d'où $h = \frac{35}{0, 1} = 350$ m.

4. Réponse b

Exercice 2. 4 points

Choix des inconnues.

Notons x le nombre de billets de 5 euros et y le nombre de billets de 10 euros.

- Mise en équations.
 - Arthur possède 21 billets, donc : x + y = 21;
 - Il a des billets de 5 et de 10 pour une somme totale de 125 euros donc : 5x + 10y = 125.

Les inconnues x et y vérifient donc le système :

$$(\mathcal{S}): \left\{ \begin{array}{rcl} x+y & = & 21 & : & (E_1) \\ 5x+10y & = & 125 & : & (E_2) \end{array} \right.$$

www.mathexams.fr 1/5

- Résolution du système par la méthode de combinaisons linéaires.

- En multipliant la première équation par 5 on obtient :

$$(\mathcal{S}): \left\{ \begin{array}{rcl} 5x + 5y & = & 105 & : & 5 \times (E_1) \\ 5x + 10y & = & 125 & : & (E_2) \end{array} \right.$$

- En soustrayant les deux équations, on élimine les termes en x et il vient :

$$5 \times (E_1) - (E_2) : -5y = -20$$
, et donc $y = \frac{-20}{-5} = 4$

– Il reste à trouver x en remplaçant y par 4 dans (E_1) par exemple.

$$x + y = 21$$
: (E_1) et donc avec $y = 4$ on obtient : $x = 21 - y = 21 - 4$ soit $x = 17$.

- Conclusion.

Le couple solution du système est donc (x = 17; y = 4)

Arthur a donc 17 billets de 5 euros et 4 billets de 10 euros.

Exercice 3. 6 points

Caroline souhaite acheter:

- Une paire de roller :
 - Soit les gris à 87 euros;
 - Soit les noirs à 99 euros.
- Un casque:
 - Soit le casque A, à 45 euros;
 - Soit un casque B, à 22 euros;
 - Soit un casque C, à 29 euros.

1. Quelle est la probabilité pour que l'ensemble lui coûte moins de 130 euros ?

Il y a six ensembles possibles au total.

Prix en euros	Casque A (45 euros)	Casque B (22 euros)	Casque C (29 euros)
Rollers Gris à 87 euros	87 + 45 = 132	87 + 22 = 109	87 + 29 = 116
Rollers Noirs à 99 euros	99 + 45 = 144	99 + 22 = 121	99 + 29 = 128

Il y a donc 4 ensembles sur les 6 qui coûtent moins de 130 euros.

La probabilité cherchée est donc $p = \frac{4}{6} = \frac{2}{3}$

2. Elle s'aperçoit qu'en achetant la paire de rollers noirs et le casque à 45 euros, elle bénéficie d'une réduction de 20%.

a. Calculons le prix après réduction.

L'ensemble "paire de rollers noirs et le casque à 45 euros" coûte 99 + 45 = 144 euros.

- La remise est de 20% donc de : 20/100 × 144 = 28,8 euros.
 Le prix après remise est alors de : 144 28,8 = 115,20 euros.

Le prix après remise est donc de 115,20 euros.

b. Calcul de la probabilité de la question 1.

La probabilité va changer puisqu'il y a maintenant 5 ensembles sur les 6 qui coûtent moins de 130 euros.

La probabilité cherchée devient donc : $p' = \frac{5}{6}$

2/5 www.mathexams.fr

Exercice 4. 5 points

Flavien veut répartir la totalité de 760 dragées au chocolat et 1 045 dragées aux amandes dans des sachets. Chaque sachet ayant la même répartitions de dragées.

1. Peut-il faire 76 sachets?

Le nombre de sachets confectionnés N doit être un diviseur commun de 760 et de 1 045. Or 76 divise 760 car 760 = 76 × 10 mais 76 ne divise pas 1 045 car $\frac{1045}{76}$ = 13,75 qui n'est pas un entier.

On ne peut donc pas faire 76 sachets.

2. a. Quel nombre maximal de sachets peut-il réaliser?

Le nombre de sachets confectionné N doit être un diviseur commun de 760 et de 1 045.

Or on cherche le plus grand, donc N est le PGCD de 760 et de 1 045.

Calculons le PGCD de 760 et de 1 045 par l'algorithme d'Euclide.

Par divisions euclidiennes successives on obtient:

$$1045 = 1 \times 760 + 285$$

 $760 = 2 \times 285 + 190$
 $285 = 1 \times 190 + 95$
 $190 = 2 \times 950 + 0$

Le PGCD de de 760 et de 1 045 est donc 95, c'est le dernier reste non nul. Le nombre maximal de sachets est donc de 95.

b. Combien de dragées de chaque sorte y aura-t-il dans chaque sachet?

Il y aura donc
$$\frac{1045}{95} = 11$$
 dragées aux amandes et $\frac{760}{95} = 8$ dragées au chocolat

Exercice 5. 4 points

1. Vérifions le calcul proposé par Julie.

- D'une part, la calculatrice donne : $3,5^2 = 12,25$;
- D'autre part, le calcul proposé donne : $3 \times 4 + 0,25 = 12 + 0,25 = 12,25$.

Le résultat obtenu est bien le carré de 3,5.

2. Proposer une façon simple de calculer $7,5^2$ et donner le résultat.

Il suffit d'effectuer le produit de 7 par 8 puis d'ajouter 0,25.

En effet:

- D'une part, la calculatrice donne : $7,5^2 = 56,25$;
- D'autre part, le calcul proposé donne : $7 \times 8 + 0, 25 = 56 + 0, 25 = 56, 25$.

Le résultat obtenu est bien le carré de 7,5.

3. Démontrons la conjecture de Julie.

Pour tout entier positif n, on a par développement :

$$(n+0,5)^2 = n^2 + 2 \times n \times 0,5 + 0,5^2$$

$$(n+0,5)^2 = n^2 + n + 0,25$$
, puis après factorisation du terme $n^2 + n$

$$(n+0,5)^2 = n(n+1) + 0,25$$

On a donc montré que la conjecture de Julie est correcte : $(n+0,5)^2 = n(n+1)+0,25$

Pour n = 3, on retrouve le résultat de la question 1., et pour n = 7, celui de la question 2.

www.mathexams.fr 3/5

Exercice 6. 4 points

On dispose d'un carré de métal de 40 cm de côté. Pour fabriquer une boite parallélépipédique, on enlève à chaque coin un carré de côté *x* et on enlève les bords par pliage.

1. Quelles sont les valeurs possibles de x?

- *x* désigne une longueur, donc *x* est positif;
- En outre, sur chaque côté du carré de côté 40 cm, on enlève deux fois x, de ce fait 2x < 40 soit x < 20. On a donc : 0 < x < 20.

2. On donne x = 5 cm. Calculer le volume de la boite.

La base de la boîte est un carré d'aire $30 \times 30 = 900 \text{ cm}^2$ et la hauteur est de 5 cm.

Le volume est donc : $V = 5 \times 30 \times 30 = 4500 \text{ cm}^3$

3. Lecture graphique.

a. Pour quelle valeur de x, le volume de la boite est-il maximum?

Graphiquement le volume est maximal pour x = 6.5.

b. On souhaite que le volume soit de 2 000 cm 3 . Quelles sont les valeurs possibles de x?

On trace la droite horizontale d'équation y = 2000. Cette droite coupe la courbe en 2 points d'abscisses 1.5 et 14.

Les valeurs possibles de x sont donc $\boxed{1,5 \text{ et } 14}$

Exercice 7. 5 points

1. Calculer la mesure de l'angle \widehat{AOB} .

Le pentagone ABCDE est régulier donc les angles au centres sont égaux et de ce fait :

$$\widehat{AOB} = \frac{360^{\circ}}{5} = 72^{\circ}$$

2. La hauteur issue de O dans le triangle AOB coupe le côté [AB] au point M.

a. Justifier que (OM) est aussi la bissectrice de l'angle \widehat{AOB} et la médiatrice de [AB].

Le triangle AOB est isocèle en O puisque les points A et B sont sur le cercle de centre O. La hauteur issue de O est donc également la bissectrice de \widehat{AOB} , la médiatrice de [AB] et la médiane issue de O.

b. Prouver que [AM] mesure environ 140 m.

- Puisque (OM) est la médiatrice de [AB], le triangle AMO est rectangle en M;
- Puisque (OM) est la bissectrice de \widehat{AOB} , on a : $\widehat{AOM} = \frac{\widehat{AOB}}{2} = \frac{72^{\circ}}{2} = 36^{\circ}$

On peut donc écrire dans le triangle AOM, rectangle en M:

$$\sin \widehat{AOM} = \frac{AM}{AO}$$
, soit
 $\sin 36^\circ = \frac{AM}{238}$ et $AM = 238 \times \sin 36^\circ \approx 140$ m.

www.mathexams.fr 4/5

c. En déduire une valeur approchée du périmètre du Pentagone.

Puisque (OM) est la médiatrice du segment [AB], $AB = 2 \times AM$ et donc le périmètre du Pentagone est égal à $| \mathscr{P} = 2 \times 5 \times AM = 10 \times AM \approx 1400 \text{ m} |$.

Exercice 8. 4 points

1. ABCD est un trapèze.

a. Donner une méthode permettant de calculer l'aire du trapèze ABCD.

Pour calculer l'aire du trapèze ABCD sans utiliser la formule de la question 2., on peut soustraire à l'aire du rectangle, les aires des deux triangles rectangles.

b. Calculer l'aire de ABCD.

- Aire du rectangle : $\mathcal{A} = 7 \times 3 = 7 \times 2 = 21 \text{ cm}^2$;
- Aire du triangle rectangle de gauche : $\mathcal{A}_1 = \frac{1 \times 3}{2} = 1,5 \text{ cm}^2$; Aire du triangle rectangle de droite : $\mathcal{A}_2 = \frac{3 \times 3}{2} = 4,5 \text{ cm}^2$;

Donc l'aire du trapèze ABCD est :

$$\mathcal{A}_{ABCD} = \mathcal{A} - \mathcal{A}_1 - \mathcal{A}_2$$

$$\mathcal{A}_{ABCD} = 21 \text{ cm}^2 - 1,5 \text{ cm}^2 - 4,5 \text{ cm}^2$$

$$\boxed{\mathcal{A}_{ABCD} = 15 \text{ cm}^2}.$$

2. Retrouvons la formule proposée.

On appelle b_1 et b_2 les bases des 2 triangles rectangles (à gauche et à droite du trapèze).

Les deux triangles ont donc pour aires respectives : $\mathcal{A}_1 = \frac{b_1 \times h}{2}$ et $\mathcal{A}_2 = \frac{b_2 \times h}{2}$. De plus le rectangle a pour aire $\mathcal{A} = B \times h$

On a donc:

$$\mathcal{A}_{ABCD} = \mathcal{A} - \mathcal{A}_1 - \mathcal{A}_2$$

$$\mathcal{A}_{ABCD} = B \times h - \frac{b_1 \times h}{2} - \frac{b_2 \times h}{2}$$

$$\mathcal{A}_{ABCD} = \frac{2B \times h}{2} - \frac{b_1 \times h}{2} - \frac{b_2 \times h}{2}$$

On peut factoriser par $\frac{h}{2}$ et on obtient :

$$\mathcal{A}_{ABCD} = \frac{h}{2} \times (2B - b_1 - b_2)$$

Or
$$B = b_1 + b + b_2$$
 soit $B - b = b_1 + b_2$

Donc

$$2B - b_1 - b_2 = 2B - \left(\underbrace{b_1 + b_2}_{2B - b_1 - b_2}\right)$$

$$2B - b_1 - b_2 = 2B - (B - b)$$

$$2B - b_1 - b_2 = 2B - B + b$$

$$2B - b_1 - b_2 = B + b$$

En remplaçant dans l'expression de l'aire on obtient :

$$\mathscr{A}_{ABCD} = \frac{h}{2} \times (B+b) = \frac{(b+B)h}{2}$$

5/5 www.mathexams.fr