

Baccalauréat 2015 - ES/L Polynésie

Série ES/L Obli. et Spé. 12 Juin 2015

Like Math93 on Facebook / Follow Math93 on Twitter

4 points

Commun à tous les candidats

Exercice 1.

Cet exercice est un questionnaire à choix multiples. Pour chacune des questions suivantes, une seule des quatre réponses proposées est exacte. Aucune justification n'est demandée. Une bonne réponse rapporte un point. Une mauvaise réponse, plusieurs réponses ou l'absence de réponse à une question ne rapportent ni n'enlèvent de point.

Indiquer sur la copie le numéro de la question et la réponse correspondante

1. Soit la fonction g définie pour tout nombre réel x strictement positif par : $g(x) = 2e^{3x} + \frac{1}{2}\ln(x)$ Si g' désigne la fonction dérivée de g, on a :

a.
$$g'(x) = 2e^{3x} + \frac{2}{x}$$

b.
$$g'(x) = 6e^{3x} + \frac{2}{x}$$

b.
$$g'(x) = 6e^{3x} + \frac{2}{x}$$
 c. $g'(x) = 6e^{3x} + \frac{1}{2x}$ **d.** $g'(x) = 6e^x + \frac{1}{2x}$

d.
$$g'(x) = 6e^x + \frac{1}{2x}$$

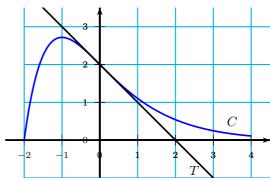
2. La courbe représentative C d'une fonction f définie sur l'intervalle [-2; 4] est donnée ci-dessous. La tangente T à la courbe au point d'abscisse 0 traverse la courbe en ce point.

La fonction f est convexe sur l'intervalle :

a.
$$[-1; 4]$$

b.
$$[-2; 0]$$

c.
$$[-2; -1]$$



3. On donne l'algorithme ci-dessous.

La valeur affichée en sortie de cet algorithme est :

- **a.** 7,1
- **b.** 7,6
- **c.** 8
- **d.** 17

Variables

n: un nombre entier naturel

Traitement

Affecter à n la valeur 0

Tant que $1, 9^n < 100$

Affecter à n la valeur n+1

Fin Tant que

Sortie

Afficher n

4. Une variable aléatoire X suit la loi uniforme sur l'intervalle [0; 5] dont la fonction de densité est représentée ci-dessous.

On a alors:

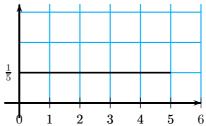
a.
$$P(X \ge 3) = P(X < 3)$$

b.
$$P(1 \le X \le 4) = \frac{1}{3}$$

c. $E(X) = \frac{5}{2}$
d. $E(X) = \frac{1}{5}$

c.
$$E(X) = \frac{5}{2}$$

d.
$$E(X) = \frac{2}{5}$$



Exercice 2. Obligatoire ES et L

5 points

Candidats ES n'ayant pas suivi l'enseignement de spécialité et candidats L

Les parties A et B sont indépendantes

Sur une exploitation agricole, une maladie rend la conservation de fruits difficile. Un organisme de recherche en agronomie teste un traitement sur un champ : sur une partie du champ, les fruits sont traités, sur l'autre, non.

On considère que le nombre de fruits récoltés est extrêmement grand et que la maladie touche les fruits de manière aléatoire.

Partie A - Étude de l'efficacité du traitement

On prélève au hasard 100 fruits sur la partie du champ traité et 100 fruits sur l'autre partie du champ. On constate que :

- sur l'échantillon des 100 fruits traités, 18 sont abimés ;
- sur l'échantillon des 100 fruits non traités, 32 sont abimés.
- 1. Déterminer un intervalle de confiance de la proportion de fruits abimés par la maladie au niveau de confiance de 95 %:
- 1. a. pour la partie du champ traitée;
- **1. b.** pour la partie du champ non traitée.
- 1. c. Au vu des intervalles obtenus à la question 1, peut-on considérer que le traitement est efficace?

Partie B - Qualité de la production

Une étude plus poussée permet d'estimer la proportion de fruits abimés à 0,12 dans la partie du champ traitée et à 0,30 dans la partie non traitée. On sait de plus qu'un quart du champ a été traité.

Une fois récoltés, les fruits sont mélangés sans distinguer la partie du champ d'où ils proviennent.

On prélève au hasard un fruit récolté dans le champ et on note :

T l'évènement « Le fruit prélevé provient de la partie traitée » ;

A l'évènement « Le fruit prélevé est abimé ».

On arrondira les résultats au millième.

- 1. Construire un arbre pondéré traduisant la situation.
- 2.
- **2. a.** Calculer la probabilité que le fruit prélevé soit traité et abimé.
- **2. b.** Montrer que P(A) = 0,255.
- **3.** Un fruit prélevé au hasard dans la récolte est abimé, Peut -on affirmer qu'il y a une chance sur quatre pour qu'il provienne de la partie du champ traitée ?
- **4.** Dans le but d'effectuer un contrôle, cinq fruits sont prélevés au hasard dans le champ. Calculer la probabilité qu'au plus un fruit soit abimé.

Exercice 2. Spécialité Maths ES

5 points

Candidats de ES ayant suivi l'enseignement de spécialité

Les parties A et B sont indépendantes

Partie A

Un constructeur de planches de surf fabrique 3 modèles. La conception de chaque modèle nécessite le passage par 3 postes de travail. Le **tableau 1** indique le nombre d'heures nécessaires par modèle et par poste pour réaliser les planches et le **tableau 2** indique le coût horaire par poste de travail.

Tableau 1	Poste 1	Poste 2	Poste 3	Tableau 2	
Modèle 1	8 h	10 h	14 h	Poste 1	25 €/h
Modèle 2	6 h	6 h	10 h	Poste 2	20 €/h
Modèle 3	12 h	10 h	18 h	Poste 3	15 €/h

1. Soit
$$H$$
 et C les deux : matrices suivantes : $H = \begin{pmatrix} 8 & 10 & 14 \\ 6 & 6 & 10 \\ 12 & 10 & 18 \end{pmatrix}$ et $C = \begin{pmatrix} 25 \\ 20 \\ 15 \end{pmatrix}$.

- **1. a.** Donner la matrice produit $P = H \times C$.
- **1. b.** Que représentent les coefficients de la matrice $P = H \times C$?
- 2. Après une étude de marché, le fabricant souhaite que les prix de revient par modèle soient les suivants :

Il cherche à déterminer les nouveaux coûts horaires par poste, notés a, b et c, permettant d'obtenir ces prix de revient.

2. a. Montrer que les réels a, b et c doivent être solutions du système :

$$H \times \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 500 \\ 350 \\ 650 \end{pmatrix}$$

2. b. Déterminer les réels a, b et c.

Partie B

La façade du magasin dans lequel sont commercialisées les planches est illuminée par un très grand nombre de spots qui sont programmés de la manière suivante :

- les spots s'allument tous à 22 heures;
- toutes les 10 secondes à partir de 22 heures, et ce de manière aléatoire, 30 % des spots allumés s'éteignent et 50 % de ceux qui sont éteints se rallument.

On note : A l'état : « le spot est allumé » et E l'état : « le spot est éteint ».

- 1. 1. a. Dessiner un graphe probabiliste traduisant la situation.
- **1. b.** Recopier et compléter la matrice de transition (dans l'ordre A, E) associée au graphe, $M = \begin{pmatrix} \cdots & 0, 3 \\ 0, 5 & \cdots \end{pmatrix}$.
- 2. On note n le nombre d'étapes (c'est à dire d'intervalles de temps de 10 secondes) qui s'écoulent à partir de 22 heures et $P_n = (a_n \quad b_n)$ l'état d'un spot à l'étape n, où a_n est la probabilité qu'il soit allumé et b_n la probabilité qu'il soit éteint. On a alors, pour tout entier naturel n: $P_{n+1} = P_n \times M$.
- **2. a.** Justifier que $a_0 = 1$ et $b_0 = 0$. Écrire une relation entre P_0 et P_n .
- **2. b.** Déterminer les coefficients de la matrice P_3 . Quelle est la probabilité que le spot considéré soit éteint à 22 heures et 30 secondes?
- **3.** Déterminer l'état stable (a b) du graphe probabiliste.

Exercice 3. 6 points

Commun à tous les candidats

Les techniciens d'un aquarium souhaitent régler le distributeur automatique d'un produit visant à améliorer la qualité de l'eau dans un bassin. La concentration recommandée du produit, exprimée en mg.l⁻¹ (milligramme par litre), doit être comprise entre 140 mg.l⁻¹ et 180 mg.⁻¹.

Au début du test, la concentration du produit dans ce bassin est de 160 mg.l^{-1} .

On estime que la concentration du produit baisse d'environ 10 % par semaine.

Afin de respecter les recommandations portant sur la concentration du produit, les techniciens envisagent de régler le distributeur automatique de telle sorte qu'il déverse chaque semaine une certaine quantité de produit.

Les techniciens cherchent à déterminer cette quantité de façon à ce que :

- la concentration du produit soit conforme aux recommandations sans intervention de leur part, pendant une durée de 6 semaines au moins ;
- la quantité de produit consommée soit minimale.

Partie A

Dans cette partie, on suppose que la quantité de produit déversée chaque semaine par le distributeur automatique est telle que la concentration augmente de 10 mg.l^{-1} .

On s'intéresse à l'évolution de la concentration chaque semaine. La situation peut être modélisée par une suite (C_n) , le terme en donnant une estimation de la concentration du produit, en mg.⁻¹, au début de la n-ième semaine. On a $C_0 = 160$.

- **1.** Justifier que, pour tout entier naturel n, $C_{n+1} = 0$, $9 \times C_n + 10$.
- **2.** Soit la suite (V_n) définie pour tout entier naturel n par : $V_n = C_n 100$.
- **2. a.** Montrer que la suite (V_n) est une suite géométrique de raison 0, 9 et que $V_0 = 60$.
- **2. b.** Exprimer V_n en fonction de n.
- **2. c.** En déduire que pour tout entier naturel n, $C_n = 0$, $9^n \times 60 + 100$.

3.

- **3. a.** Déterminer la limite de la suite (C_n) quand n tend vers l'infini. Justifier la réponse. Interpréter le résultat au regard de la situation étudiée.
- **3. b.** Au bout de combien de semaines la concentration devient -elle inférieure à 140 mg.l $^{-1}$?
- **4.** Le réglage envisagé du distributeur répond-il aux attentes ?

Partie B

Dans cette partie, on suppose que la quantité de produit déversée chaque semaine par le distributeur automatique est telle que la concentration augmente de 12 mg.l⁻¹. Que penser de ce réglage au regard des deux conditions fixées par les techniciens ?

Exercice 4. 5 points

Commun à tous les candidats

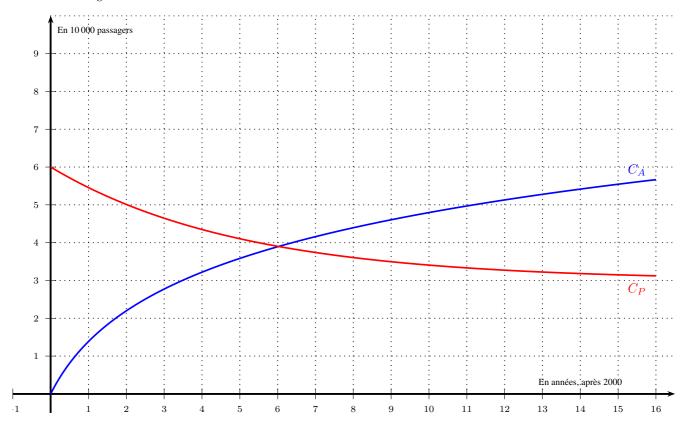
Une compagnie aérienne propose à partir du premier janvier de l'année 2000 une nouvelle formule d'achat de billets, la formule *Avantage* qui s'ajoute à la formule *Privilège* déjà existante.

Une étude a permis de modéliser l'évolution du nombre de passagers transportés depuis l'année 2000 et la compagnie admet que ce modèle est valable sur la période allant de l'année 2000 à l'année 2016.

- Le nombre de passagers choisissant la formule *Privilège* est modélisé par la fonction P définie sur l'intervalle [0; 16];
- et le nombre de passagers choisissant la formule Avantage est modélisé par la fonction A définie sur l'intervalle [0; 16].

Le graphique donné ci-dessous représente les courbes représentatives C_P et C_A de ces deux fonctions.

Lorsque x représente le temps en année à partir de l'année 2000, P(x) représente le nombre de passagers, exprimé en dizaine de milliers, choisissant la formule $Privil\`ege$ et A(x) représente le nombre de passagers, exprimé en dizaine de milliers, choisissant la formule Avantage.



Partie A

Dans cette partie, les estimations seront obtenues par lecture graphique.

- 1. Donner une estimation du nombre de passagers qui, au cours de l'année 2002, avaient choisi la formule *Privilège*.
- **2.** Donner une estimation de l'écart auquel la compagnie peut s'attendre en 2015 entre le nombre de passagers ayant choisi la formule *Avantage* et ceux ayant choisi la formule *Privilège*.
- 3. Comment peut-on interpréter les coordonnées du point d'intersection des deux courbes au regard de la situation proposée ?
- **4.** Justifier que la compagnie aérienne peut, selon ce modèle, estimer que le nombre total de passagers ayant choisi la formule *Privilège* durant la période entre 2007 et 2015 sera compris entre 240 000 et 320 000.

Partie B

On admet que la fonction A est définie sur l'intervalle [0; 16] par

$$A(x) = 2\ln(x+1)$$

et que la fonction P est définie sur l'intervalle [0; 16] par

$$P(x) = 3 + 3e^{-0.2x}.$$

On s'intéresse à la différence en fonction du temps qu'il y a entre le nombre de passagers ayant choisi la formule *Avantage* et ceux ayant choisi la formule *Privilège*. Pour cela, on considère la fonction E définie sur l'intervalle [0; 16] par E(x) = A(x) - P(x).

- 1. On note E' la fonction dérivée de E sur l'intervalle [0; 16].
- **1. a.** On admet que $E'(x) = \frac{2}{x+1} + 0$, $6e^{-0.2x}$. Justifier que E' est strictement positive sur l'intervalle [0; 16].
- **1. b.** Dresser le tableau de variation de la fonction E sur l'intervalle [0; 16].

2.

- **2. a.** Montrer que l'équation E(x)=0 admet une unique solution, notée α , sur l'intervalle [0; 16]. Donner la valeur de α en arrondissant au dixième.
- **2. b.** Dresser le tableau de signes de la fonction E sur l'intervalle [0; 16]. Interpréter les résultats obtenus au regard des deux formules proposées par la compagnie aérienne.